§7. Нуклеиновые кислоты

Дезоксирибонуклеиновая и рибонуклеиновая кислоты или ДНК и РНК, как и белки, являются биополимерами. Оба типа состоят из соединений мономеров – нуклеотидов. Нуклеотид – это самый малый элемент их структуры. Замена или повреждение одного такого мономера вызывает мутацию. Поэтому еще его называют единицей мутации. История открытия и изучения нуклеотидов неразрывно связана с исследованиями кислот.

Честь открытия молекулы ДНК принадлежит Иогану Ф. Мишеру. Произошло это событие в 1869 году в процессе изучения состава и функции клеток лейкоцитов. Выделив из гноя неизвестное вещество, он определил только химический состав и дал ему название. Предположить же какую революцию в науке произведет его открытие ученый не смог.
Долгое время обнаруженному веществу никто не придавал особого значения. Хотя интерес проявляли многие. Прорыв был сделан физиком У.Криком и биологом Д. Уотсоном после многолетних исследований. Именно они в 1953 году опубликовали статью, в которой предложили и доказали строение этой загадочной молекулы. Однообразные сочленения связаны между собой в гигантские закрученные спирали, содержащие целые базы данных наследственной информации. Над расшифровкой информации ученые бьются и в наши дни.
В отличие от своей предшественницы существование РНК предсказали. Изучая синтез белков, исследователи пришли к выводу, что есть некий посредник между ними и ДНК. И в середине 60-х годов ХХ века была обнаружена РНК. Мономеры РНК соединяются между собой в длинные однонитевые цепи.

Как устроены мономеры

Мономеры обеих кислот сходны по своему строению, в каждом из них по три компонента. Мономерами днк и рнк являются следующие компоненты: пятиуглеродный сахар, азотистое основание и остатки фосфорной кислоты. Все составляющие соединены между собой водородными связями. Несмотря на то, что днк и рнк содержат одни и те же химические элементы, они далеко не тождественны. Отличия в составе кислот грубо можно свести к отсутствию в ДНК одного атома кислорода в рибозе, что превращает его в дезоксирибозу, и к тому, что в состав одной входит тимин, а состав другой – урацил. Рибоза и дезоксирибоза также мало отличаются друг от друга, как тимин и урацил. Минимальные различия в строении, однако, наделяют молекулы отличными функциями.
ДНК–это устойчивая и прочная спираль, этим она отличается от РНК. У РНК молекулы закручиваются в клубки, образуют шпильки и иные причудливые формы. Она является не громоздкой, но и неустойчивой. По числу нуклеотидов в молекуле РНК можно подразделить на три вида, информационную, транспортную и рибосомальльную. Она является подвижной, способна накапливать энергию и передавать информацию. Слаженный дуэт этих двух нуклеиновых кислот обеспечивает функционирование всего живого на планете.
Функции и роль мономерных звеньев во всей этой феерии жизни достаточно велика. Каждый из них участвует в ней по-своему. Одни накапливают энергию в клетке, другие контролируют процесс обмена веществ, третьи выступают в роли катализаторов. Три последовательно соединенных нуклеотида образуют триплет. Сочетания триплетов несут в себе информацию о строении белковой клетки, и называются генами. Поэтому нуклеотид еще можно определить как некий информационный носитель.

Применение нуклеотидов

На протяжении всей своей истории человечество не расстается с надеждой найти эликсир молодости. Звенья цепей РНК и ДНК

В середине ХХ века обнаружили функции изолированных нитей ДНК вызывать регенерацию клеток. Сейчас уже разрабатываются косметические средства для омоложения кожи, содержащие «волшебные обрывки спирали».
Расшифровка наследственной информации, содержащейся в нуклеотидах, позволяет бороться с генетическими заболеваниями.
Скандально известные генетически модифицированные продукты также обязаны своим существованием знаниям о строении и свойствах звеньев ДНК.

Применение в медицине

Уже даже то немногое что мы знаем о строении ДНК позволяет применять эти знания на практике. Генная терапия применяется в медицине и основана на введении одного или нескольких нуклеотидов в пораженную клетку, с целью замещения поврежденного участка ДНК. Благодаря этой функции, клетка устраняет дефект и восстанавливает «правильную программу». Эта терапия дает надежду страдающим наследственными заболеваниями. Положительного результата добились впервые в 90-х годах прошлого столетия излечив наследственный иммунодефицит у маленькой девочки. Сейчас известно более 40 заболеваний, при которых она применяется. Проводятся эксперименты по лечению раковых опухолей. Перепрограммируя, при помощи маркированных генов, пораженные клетки и иммунную защиту организма, в половине случаев добиваются положительных результатов. Опухоль уменьшается вдвое. Нельзя сказать, что это успех, но это начало пути к нему. Этим методом пытаются вылечить не только онкологические заболевания, но и победить ВИЧ-инфекцию. Функции, которыми наделены нуклеотиды, активно применяются и в диагностических целях. Существует ряд методик для определения наличия патологических генов у пациентов и возможность мутаций.

Перспективы

Треть заболеваний человека имеют наследственную природу. Считается, что вызывают их повреждения функций хранилищ наследственной информации. Ожидается, что будут изучены причины повреждений и найдены способы их восстановления, что позволит распознавать болезни на ранней стадии и добиваться их полного излечения.
Уже более 20-ти лет существует международный проект «Геном человека». Ученые и исследователи всего мира выясняют последовательность соединения нуклеотидов в ДНК. Развитие новейших технологий позволит решить эту задачу в ближайшем будущем.
Человечество лишь слегка приоткрыло занавес тайны мироздания. Какая еще информация зашифрована в сочленениях ДНК и РНК. К чему могут привести нас эти знания. Даруют ли они нам сверхспособности или же уничтожат нас?

Нуклеиновые кислоты – это высокомолекулярные органические соединения, биополимеры, образованные остатками нуклеотидов. Полимерные формы нуклеиновых кислот называют полинуклеотидами. Цепочки из нуклеотидов соединяются через остаток фосфорной кислоты (фосфодиэфирная связь). Различают два класса нуклеиновых кислот:

Дезоксирибонуклеиновая кислота (ДНК). Сахар - дезоксирибоза, азотистые основания: пуриновые - гуанин (G), аденин (A), пиримидиновые тимин (T) и цитозин (C). ДНК часто состоит из двух полинуклеотидных цепей, направленных антипараллельно. Модель пространственного строения молекулы ДНК в виде двойной спирали предложена в 1953 г. Дж. Уотсоном и Ф. Криком.

Рибонуклеиновая кислота (РНК). Сахар - рибоза, азотистые основания: пуриновые - гуанин (G), аденин (A), пиримидиновые урацил (U) и цитозин (C). Структура полинуклеотидной цепочки аналогична таковой в ДНК. Из-за особенностей рибозы молекулы РНК часто имеют различные вторичные и третичные структуры, образуя комплементарные участки между разными цепями.

Молекула ДНК образована двумя полинуклеотидными цепями, спирально закрученными друг около друга и вместе вокруг воображаемой оси, т.е. представляет собой двойную спираль. Диаметр двойной спирали ДНК - 2 нм, расстояние между соседними нуклеотидами - 0,34 нм, на один оборот спирали приходится 10 пар нуклеотидов. Длина молекулы может достигать нескольких сантиметров. Молекулярный вес - десятки и сотни миллионов. Суммарная длина ДНК ядра клетки человека - около 2 м. В эукариотических клетках ДНК образует комплексы с белками и имеет специфическую пространственную конформацию.

Мономер ДНК - нуклеотид (дезоксирибонуклеотид) - состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы), 3) фосфорной кислоты.

Азотистые основания нуклеиновых кислот относятся к классам пиримидинов и пуринов. Пиримидиновые основания ДНК (имеют в составе своей молекулы одно кольцо) - тимин, цитозин. Пуриновые основания (имеют два кольца) - аденин и гуанин.

Полинуклеотидная цепь образуется в результате реакций конденсации нуклеотидов. При этом между 3"-углеродом остатка дезоксирибозы одного нуклеотида и остатком фосфорной кислоты другого возникает фосфоэфирная связь (относится к категории прочных ковалентных связей). Один конец полинуклеотидной цепи заканчивается 5"-углеродом (его называют 5"-концом), другой - 3"-углеродом (3"-концом). Против одной цепи нуклеотидов располагается вторая цепь. Расположение нуклеотидов в этих двух цепях не случайное, а строго определенное: против аденина одной цепи в другой цепи всегда располагается тимин, а против гуанина - всегда цитозин, между аденином и тимином возникают две водородные связи, между гуанином и цитозином - три водородные связи. Закономерность, согласно которой нуклеотиды разных цепей ДНК строго упорядоченно располагаются (аденин - тимин, гуанин - цитозин) и избирательно соединяются друг с другом, называется принципом комплементарности. Из принципа комплементарности следует, что последовательность нуклеотидов одной цепи определяет последовательность нуклеотидов другой. Цепи ДНК антипараллельны (разнонаправлены), т.е. нуклеотиды разных цепей располагаются в противоположных направлениях, и, следовательно, напротив 3"-конца одной цепи находится 5"-конец другой. Молекулу ДНК иногда сравнивают с винтовой лестницей. «Перила» этой лестницы - сахарофосфатный остов (чередующиеся остатки дезоксирибозы и фосфорной кислоты); «ступени» - комплементарные азотистые основания.

Функция ДНК - хранение и передача наследственной информации.

РНК - полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение - некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК. Мономер РНК - нуклеотид (рибонуклеотид) - состоит из остатков трех веществ:

1) азотистого основания,

2) пятиуглеродного моносахарида (пентозы),

3) фосфорной кислоты.

Азотистые основания РНК также относятся к классам пиримидинов и пуринов. Пиримидиновые основания РНК - урацил, цитозин, пуриновые основания - аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой. Выделяют три вида РНК:

1) информационная (матричная) РНК - иРНК (мРНК),

2) транспортная РНК - тРНК,

3) рибосомная РНК - рРНК.

Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Значение нуклеиновых кислот: хранение, перенос и передача по наследству информации о структуре белковых молекул. Стабильность НК - важнейшее условие нормальной жизнедеятельности клеток и целых организмов.

Таким образом, нуклеиновые кислоты ДНК и РНК присутствуют в клетках всех живых организмов и выполняют важнейшие функции по хранению, передаче и реализации наследственной информации.



Нуклеиновые кислоты.

Нуклеиновые кислоты - это природные высокомолекулярные соединения (полинуклеотиды), которые играют огромную роль в хранении и передаче наследственной информации в живых организиах.

Существует два вида нуклеиновых кислот: дезоксирибонуклеиновая (ДНК) и рибонуклеиновая кислота (РНК). Эти биополимеры состоят из мономеров, называемых нуклеотидами.

Основное местоположение ДНК - ядро клетки. ДНК обнаружена также в некоторых органоидах (пластиды, митохондрии, центриоли). РНК встречаются в ядрышках, в рибосомах и цитоплазме клеток.

Молекула ДНК представляет собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру называют двойной спиралью. Водородные связи возникают между пуриновым основанием одной цепи и пиримидиновым основанием другой цепи. Эти основания составляют комплементарные пары (от лат. complementum - дополнение).

Характеристика ДНК.

1. ДНК (дезоксирибонуклеиновая кислота)- линейный полимер, имеющий вид двойной спирали, образованной парой антипараллельных комплементарных цепей. Мономерами ДНК являются нуклеотиды.

2. Нуклеотиды ДНК состоят из пуриновых (А - аденин или Г - гуанин) или пиримидиновых (Т - тимин или Ц - цитозин) азотистых оснований, пятиуглеродного сахара- дезоксирибозы - и фосфатной группы.

3. Молекула ДНК имеет следующие параметры: ширина спирали около 2 нм, шаг, или полный оборот, спирали - 3,4 нм. В одном шаге содержится 10 комплементарных нуклеотидов.

4. Нуклеотиды в молекуле ДНК обращены друг к другу азотистыми основаниями и объединены парами в соответствии с правилами комплементарности: напротив аденина расположен тимин, напротив гуанина - цитозин. Пара АЛ1 соединена двумя водородными связями, а пара Г-Ц - тремя.

5. Остов цепей ДНК образован сахарофосфатными остатками.

6. Репликация ДНК- это процесс самоудвоения молекулы ДНК, осуществляемый под контролем ферментов.

На каждой из цепей, образовавшихся после разрыва водородных связей, при участии ДНК-полимеразы синтезируется дочерняя цепь ДНК. Материалом для синтеза служат свободные нуклеозид-фосфаты, имеющиеся в цитоплазме клеток.

7. Синтез дочерних молекул на соседних цепях идет с разной скоростью. На одной цепи новая молекула собирается непрерывно, на другой - с некоторым отставанием и фрагментарно. После завершения процесса фрагменты новых молекул ДНК сшиваются ферментом ДНК-лигазой. Так из одной молекулы ДНК возникают две, являющиеся точной копией друг друга и материнской молекулы. Такой способ репликации называется полуконсервативным.

8. Биологический смысл репликации заключается в точной передаче наследственной информации от материнской молекулы к дочерним, что и происходит при делении соматических клеток.

Характеристика РНК.

РНК- линейный полимер, состоящий из одной цепи нуклеотидов. В составе РНК тиминовый нуклеотид замещен на урациловый (У). Нуклеотиды РНК содержат пятиуглеродный сахар рибозу, одно из четырех азотистых оснований и остаток фосфорной кислоты.

Виды РНК:

Матричная, или информационная, РНК- синтезируется в ядре при участии фермента РНК- полимеразы. Комплементарна участку ДНК, на котором происходит синтез. Составляет 5% РНК клетки;

Рибосомная РНК- синтезируется в ядрышке и входит в состав рибосом. Составляет 85% РНК клетки;

Транспортная РНК (более 40 видов)- транспортирует аминокислоты к месту синтеза белка. Имеет структуру клеверного листа и состоит из 70-90 нуклеотидов.

Нуклеиновые кислоты – биополимеры . Типы нуклеиновых кислот. В клетках имеются два типа нуклеиновых кислот: дезоксирибонуклеиновая кислота (ДНК) и рибонуклеиновая кислота (РНК).

Эти биополимеры состоят из мономеров, называемых нуклеотидами. Мономеры-нуклеотиды ДНК и РНК сходны в основных чертах строения. Каждый нуклеотид состоит из трех компонентов, соединенных прочными химическими связями.

Нуклеотиды, входящие в состав РНК, содержат пятиуглеродный. сахар - рибозу, одно из четырех органических соединений, которые называют азотистьши основаниями: аденин, гуанин, цитозин, урацил (А, Г, Ц, У) - и остаток фосфорной кислоты.

Нуклеотиды, входящие в состав ДНК, содержат пятиуглеродный сахар - дезоксирибозу, одно из четырех азотистых оснований: аденин, гуанин, цитозин, тимин (А, Г, Ц, Т) - и остаток фосфорной кислоты.

В составе нуклеотидов к молекуле рибозы (или дезоксирибозы) с одной стороны присоединено азотистое основание, а с другой - остаток фосфорной кислоты. Нуклеотиды соединяются между собой в длинные цепи. Остов такой цепи образуют регулярно чередующиеся остатки сахара и органических фосфатов, а боковые группы этой цепи - четыре типа нерегулярно чередующихся азотистых оснований.

Молекула ДНК представляет. собой структуру, состоящую из двух нитей, которые по всей длине соединены друг с другом водородными связями. Такую структуру, свойственную только молекулам ДНК, называют двойной спиралью. Особенностью структуры ДНК является то, что против азотистого основания А в одной цепи лежит азотистое основание Т в другой цепи, а против азотистого основания Г всегда расположено азотистое основание Ц. Схематически сказанное можно выразить следующим образом:

А (аденин) - Т (тимин) Т (тимин) - А (аденин) Г (гуанин) - Ц (цитозин) Ц (цитозин) - Г (гуанин) Эти пары оснований называют комплементарными основаниями (дополняющими друг друга). Нити ДНК, в которых основания расположены комплементарно друг к другу, называют комплементарными нит^и. На рисунке 8 приведены две нити ДНК, которые соединены комплементарными участками.

Модель строения молекулы ДНК предложили Дж. Уотсон и Ф. Крик в 1953 г. Она полностью подтверждена экспериментально и сыграла исключительно важную роль в развитии молекулярной биологии и генетики.

Расположение четырех типов нуклеотидов в цепях ДНК несет важную информацию. Порядок расположения нуклеотидов в молекулах ДНК определяет порядок расположения аминокислот в. линейных молекулах белков, т. е. их первичную структуру. Набор белков (ферментов, гормонов и др.) определяет свойства клетки и организма. Молекулы ДНК хранят сведения об этих свойствах и передают их в поколения потомков. Другими словами, ДНК является носителем наследственной информации. Молекулы ДНК в основном находятся в ядрах клеток. Однако небольшое их количество содержится в митохондриях и хлоропластах.

Основные виды РНК. Наследственная информация, хранящаяся в молекулах ДНК, реализуется через молекулы белков. Информация о строении белка передается в цитоплазму особыми молекулами РНК, которые называются информационными (и-РНК). Информационная РНК переносится в цитоплазму, где с помощью специальных органоидов - рибосом идет синтез белка. Именно информационная РНК, которая строится комплементарно одной из нитей ДНК, определяет порядок расположения аминокислот в белковых молекулах.

В синтезе белка принимает участие другой вид РНК - транспортная (т-РНК), которая подносит аминокислоты к месту образования белковых молекул - рибосомам, своеобразным фабрикам по производству белков.

В состав рибосом входит третий вид РНК, так называемая рибосомная РНК (р-РНК), которая определяет структуру рибосом.

В данной статье содержится информация об элементах всех нуклеиновых кислот, а именно ее мономерах. Тут вы найдете данные об их строении, разнообразии существующих видов и т. д.

Нуклеиновая кислота - что это

Самым важным компонентом любой растительной, животной, бактериальной и даже вирусной клетки является нуклеиновая кислота, которая несет ответственность за передачу, воспроизведение и сохранение информации наследственного типа. Биополимерные соединения - нуклеиновые кислоты - создаются кодировкой нуклеотидов. Рибонуклеиновая к-та (РНК) и дезоксирибонуклеиновая к-та (ДНК) - кислоты, принадлежащие к нуклеиновым. Мономерами нуклеиновых кислот являются нуклеотиды 5 разновидностей, из них 3 подходят и для дизокси-, и для рибонуклеиновых кислот, а оставшиеся нуклеотиды отличны.

Разнообразие нуклеиновых кислот

ДНК и РНК являются представителями кислот нуклеинового класса, однако последняя рибонуклеиновая кислота, в соответствии с функциями, для которых она предназначена в клетке, может иметь различные названия, например: транспортная рибонуклеиновая к-та (тРНК) или информационная рибонуклеиновая к-та (иРНК). Однако этот пункт не влияет на особенности строения самой к-ты. Что представляет собой мономер нуклеиновых кислот? Ответом на этот вопрос будет перечисление элементов: рибозы и дезоксирибозы (виды сахаров), HPO3 кислоты, а точнее, ее остатков и в основаниях тимине (урациле) и аденине, гуанине и цитозине.

Мономеры

Мономерами нуклеиновых кислот являются три составные, как упоминалось ранее, - это моносахарид, обладатели гетероциклических свойств - азотистые основания и кислотный остаток HPO3. Составные виды мономеров нуклеиновых кислот - это пуринопроизводные вещества аденины (А) и гуанины (Г) и компоненты пиримидиновой природы: цитозины (Ц), тимины (Т) и урацил (У). Стоит также знать о существовании нетипичных оснований, представителями которых являются псевдоуридины и дигидроуридины.

Мономерами нуклеиновых кислот являются ответственные за жизненно важные функции вещества, присущие и прокариотическим организмам, и эукариотическим. Нуклеиновые кислоты классифицируют в соответствии с тем, каким моносахаридом представлена сама кислота. Рибозные к-ты представляются рибозой, а нуклеиновые к-ты, представленные дезоксирибозой, называют дезоксирибозными. Доминирующее отличие между цепями РНК и ДНК заключено в наличии либо тимина, либо урацила в цепи молекулы. ДНК несет в себе пиримидиновый тимин, а РНК - урацил. Эти два нуклеотида заменяются в данных кислотах и становятся комплементарными аденину.

Мономерами нуклеиновых кислот являются соединения, в основу которых заложена химическая связь - 3.5-фосфодиэфирная, которая образует линейные структуры, а целью ее является связывание пентозы в нуклеотиде. Данная конструкция нуклеиновых кислот позволяет на одном цепочном конце образовать свободную 3-OH группу и на противоположном окончании цепи расположиться группе 5-OH.

РНК и ДНК являются универсальными и уникальными для всех организмов. Это обусловлено их способностью к передаче и сохранению разнообразной информации, несущей в себе генетическую наследственность. Практически каждый живой организм несет в себе одновременно обе кислоты, базирующиеся как на моносахариде рибозе, так и на дезоксирибозе, и только вирусы - представители неклеточной жизненной формы - содержат в себе только одну форму нуклеиновой кислоты.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием