Биология в лицее. Сцепление наследования генов

Такое понятие, как наследование признаков, широко изучается в генетике. Именно им объясняется сходство потомства и родителей. Любопытно, что некоторые проявления признаков наследуются совместно. Это явление, впервые подробно описанное ученым Т. Морганом, стало называться «сцепленное наследование». Поговорим о нем подробнее.

Как известно, каждый организм обладает определенным количеством генов. Хромосом же при этом - также строго ограниченная цифра. Для сравнения: здоровый человеческий организм обладает 46 хромосомами. Генов же в нем в тысячи раз больше. Судите сами: каждый ген отвечает за тот или иной признак, проявляющийся во внешнем облике человека. Естественно, их очень много. Поэтому стали говорить о том, что несколько генов локализуются в одной хромосоме. Называются эти гены группой сцепления и определяют сцепленное наследование. Подобная теория витала в научной среде довольно долгое время, однако лишь Т. Морган дал ей определение.

В отличие от наследования генов, которые локализованы в разных парах одинаковых хромосом, сцепленное наследование обусловливает образование дигетерозиготной особью только двух типов гамет, повторяющих комбинацию родительских генов.

Наряду с этим возникают гаметы, комбинация генов в которых отличается от хромосомного набора родителей. Этот результат является следствием кроссинговера - процесса, важность которого в генетике переоценить сложно, поскольку он позволяет потомству получить различные признаки от обоих родителей.

В природе существуют три типа наследования генов. Для того чтобы определить, какой тип присущ именно данной их паре, применяют В результате обязательно получится один из трех вариантов, приведенных ниже:

1. Независимое наследование. В подобном случае гибриды отличаются друг от друга и от родителей по внешнему виду, иначе говоря, в результате мы имеем 4 варианта фенотипов.

2. Полное сцепление генов. Гибриды первого поколения, получившиеся при скрещивании родительских особей, полностью повторяют фенотип родителей и неотличимы между собой.

3. Неполное сцепление генов. Так же, как и в первом случае, при скрещивании получается 4 класса различных фенотипов. При этом, однако, происходит образование новых генотипов, полностью отличных от родительского фонда. Именно в таком случае в процесс образования гамет вмешивается кроссинговер, упомянутый выше.

Также установлено, что, чем меньше расстояние между наследуемыми генами в родительской хромосоме, тем выше вероятность их полного сцепленного наследования. Соответственно, чем дальше друг от друга они располагаются, тем реже происходит перекрест при мейозе. Расстояние между генами - фактор, в первую очередь определяющий вероятность сцепленного наследования.

Отдельно необходимо рассмотреть сцепленное наследование, связанное с полом. Суть его та же, что и при варианте, рассмотренном выше, однако наследуемые гены в данном случае расположены в половых хромосомах. Поэтому говорить о таком типе наследования можно лишь в случае млекопитающих (человек в их числе), некоторых пресмыкающихся и насекомых.

Принимая во внимание факт того, что XY - это набор хромосом, соответствующий мужскому полу, а XX - женскому, отметим, что все основные признаки, отвечающие за жизнеспособность организма, расположены в хромосоме, присутствующей в генотипе каждого организма. Конечно, речь идет о Х - хромосоме. У женских особей могут наличествовать как рецессивные, так и в хромосомах. Мужские же могут наследовать лишь один из вариантов - то есть либо ген проявляет себя в фенотипе, либо нет.

Сцепленное наследование, обусловленное полом, часто звучит в контексте заболеваний, которые свойственны именно мужчинам, в то время как женщины являются лишь их носителями:

  • гемофилия,
  • дальтонизм;
  • синдром Леша - Найхана.

Гены, расположенные в одной и той же хромосомной паре, называются "сцепленными". Сцепленные гены не подчиняются второму закону Менделя; они не дают свободной рекомбинации друг с другом. У норки мутантные гены черных и кареглазых пастелей являются сцепленными; такими же, разумеется, являются их нормальные аллеломорфы. Сцепленные с полом гены сцеплены с определяющими пол генами в хромосоме; естественно, они также сцеплены и друг с другом.

У человека мутантные гены дальтонизма и гемофилии связаны с полом (см. гл. 15) и, следовательно, сцеплены друг с другом. Случается, что оба мутантных гена могут оказаться в одной семье. Такие семьи бывают двух различных типов.

Тип I. В этих семьях два мутантных гена соединились в итоге брака между людьми, несущими тот или иной ген. Гены, таким образом, пребывают в различных хромосомах; выражаясь языком генетики, они сцеплены в процессе "отталкивания" (рис. 62, I , первый ряд).

Тип II. В этих семьях мутация, приводящая к одной из таких ненормальностей, например гемофилии, совершается в хромосоме, которая уже несет другой мутантный ген. Оба мутантных гена находятся в одной и той же X-хромосоме; они сцеплены в процессе "притяжения" (см. рис. 62, II , первый ряд).

Большинство женщин в обоих типах семей будут фенотипически нормальны, но многие окажутся гетерозиготными по одному или обоим мутантным генам (см. рис. 62, второй ряд), и эти женщины могут иметь больных сыновей. Так как сын наследует только одну X-хромосому матери, больные сыновья гетерозигот I типа страдают или гемофилией, или дальтонизмом, но не имеют оба заболевания одновременно (см. рис. 62, третий ряд), в то время как больные сыновья гетерозигот II типа имеют оба заболевания одновременно. Однако могут быть и исключения. Они представлены в четвертом ряду рис. 62.

Изредка женщина, несущая ген дальтонизма в одной X-хромосоме и ген гемофилии в другой (тип I ), может родить сына, страдающего обоими заболеваниями; или же женщина, несущая гены обоих заболеваний в одной X-хромосоме (тип II ), может родить сына, страдающего только одним из этих заболеваний.

Нетрудно заметить, что эти исключения аналогичны таковым у детенышей паломино-норки, соединивших в одной хромосоме два гена, которые у их родителей находились в различных хромосомах-партнерах. Во всех этих случаях мутантный ген, по-видимому, перемещается из одной хромосомы к ее партнеру. Этот процесс называется кроссинговером; он допускает ограниченное число рекомбинаций между генами, которые не подчиняются второму закону Менделя.

Явление кроссинговера породило большое количество экспериментов и предположений на протяжении десяти лет, но до сих пор оно остается непонятым до конца. Однако последствия кроссинговера хорошо известны и в любом случае могут быть предсказаны в такой же степени, как и последствия законов Менделя.

На рис. 63 показаны результаты кроссинговера для двух хромосом, вернее, для генов, находящихся в них.

В исходной паре хромосом (a ) один из партнеров заштрихован для отличия его от другого, б и в представляют собой два варианта многочисленных типов кроссинговера, которые могут наблюдаться у пары а. В обоих случаях произошел обмен кусками между хромосомами-партнерами. В случае б обмен получился концевыми кусками, и для этого потребовалась только одна точка (x ) обмена; в случае в произошел обмен средними кусками, и для этого потребовались две точки (x и y ).

Наиболее важная черта кроссинговера - точное соответствие между точками обмена у хромосом-партнеров. Если бы не было столь точного соответствия, то хромосомы-партнеры вскоре перестали бы быть равными по длине; более того, число генов в них перестало бы быть одинаковым, и хромосомы с очень большим или малым количеством генов могли попасть в круговорот, а это привело бы к появлению уродств и смерти.

Если, например (рис. 64), точка обмена в одной из хромосом попадет между 4-м и 5-м генами, а в другой - между 6-м и 7-м генами, то в результате обмена концевыми кусками получится одна хромосома с утерей 5-го и 6-го генов, а хромосома-партнер будет иметь эти гены в двойном количестве.

Наиболее распространена точка зрения, что кроссинговер происходит в начале мейоза, когда хромосомы-партнеры не только тесно и точно соприкасаются, но и обвиваются одна вокруг другой; вследствие напряжения от скручивания может произойти разрыв хромосом в идентичных точках и соединение вновь с кусками между партнерами. Высказываются и другие предположения, но до настоящего времени нет единой точки зрения на этот вопрос.

Обмен кусками между хромосомами-партнерами легко объясняет кроссинговер в его генетическом проявлении независимо от того, какой механизм лежит в его основе.

На рис. 65 показано, как можно объяснить рождение сына с дальтонизмом и гемофилией у женщины, которая несет гены этих аномалий в противоположных хромосомах (I ), ли сына только с одной аномалией у женщины, имеющей оба гена в одной и той же хромосоме (II ).

Если локализация точек обмена определяется случайностью, нужно ожидать, что кроссинговер между генами, значительно удаленными друг от друга в хромосоме, будет происходить чаще, чем между близко расположенными генами; это действительно так и происходит. Когда два гена расположены друг к другу очень близко, вероятность того, что точка обмена попадает между ними, невелика, и кроссинговер наблюдается редко. Чем больше расстояние между двумя генами, тем больше вероятность того, что точка обмена расположится между ними, и тем выше встречаемость кроссинговера. Два гена могут комбинироваться так же свободно, как если бы они находились в различных парах хромосом, в тех случаях, когда расстояние между ними больше какой-то определенной величины.

Исторически и логически это положение ставит повозку впереди лошади. Именно в результате открытия генетического сцепления стало возможным привязать гены к хромосомным парам, тогда как открытие кроссинговера позволило измерить расстояние между генами в единицах частоты встречаемости кроссинговера. Сказать, что два гена расположены друг от друга на расстоянии 10 единиц кроссинговера, проще и короче, чем говорить, что гетерозигота этих двух генов образует 10% кроссинговерных гамет.

Когда пара хромосом несет несколько или много известных генов, эксперименты с кроссинговером можно использовать для получения хромосомной "карты", которая показывает расположение генов и их относительные расстояния друг от друга.

У Drosophila melanogaster гены красных глаз (St , рецессивный), торчащих щетинок (Sb , доминантный) и изогнутых крыльев (Cu , рецессивный) расположены в третьей хромосоме, одной из двух длинных аутосом. Расстояние по кроссинговеру между St и Sb составляет 14%, а между Cu и Sb равно 8%. Одних этих данных недостаточно для того, чтобы представить себе расположение трех генов, так как они могут находиться в двух различных положениях (рис. 66, I и II ). Однако когда станет известно, что расстояние по кроссинговеру между St и Cu равно 6, а между Cu и Sb равно 8, то порядок расположения генов St , Cu и Sb устанавливается точно (см. рис. 66, III ). Таким же методом на карте может быть нанесено положение и других генов. В настоящее время карта этой хромосомы дает расположение более 150 генов. Тот факт, что гены всегда можно нанести на карту таким приемом, является доказательством их линейного расположения вдоль хромосомы. Если бы расположение было другим, например некоторые гены выступали из хромосомы в боковые ветви, то расстояние между тремя генами нельзя было бы всегда выражать так, что одно расстояние представляет собой сумму двух других (рис. 67). В действительности оно обычно оказывается несколько меньшим этой суммы; но эта второстепенная деталь может быть объяснена, и на этом здесь не стоит останавливаться.


Рис. 66. Как гены "наносятся" на карту. Расстояние между St и Sb равняется 14% кроссинговера; расстояние между St и Сu равно 8% кроссинговера; расстояние между St и Сu равно 6% кроссинговера. Следовательно, порядок расположения генов будет таким, как показано в III строке

Для селекционера-животновода значение кроссинговера заключается в возможности рекомбинаций, т. е. соединения или разделения сцепленных генов.

Можно ли этого достигнуть легко и экономично, зависит от расстояния между генами, которые интересуют селекционера. Когда гены достаточно далеко удалены друг от друга, сцепление не является препятствием для рекомбинаций. Когда сцепленные гены значительно сближены, чтобы можно было уловить сцепленность, селекционер сначала должен выяснить, достаточно ли у него возможностей для осуществления задуманного плана разведения.

Специалист, желающий скрестить породу мышей с розовыми глазами 1 и породу шиншилла, чтобы получить породу мышей цвета шиншилла с розовыми глазами, может достигнуть этого без особого труда и затрат; так как расстояние кроссинговера между генами розовых глаз и мехом цвета шиншилла составляет около 15%, поэтому гетерозиготы, несущие эти гены, при отталкивании образуют около 15% гамет, несущих эти гены в протяжении. С другой стороны, любитель, разводящий мышей и желающий получить породу мышей с ослабленной окраской шерсти и нормальными ушами от породы со светлой окраской шерсти и короткими ушами, должен прежде обратиться к руководству по генетике мышей, чтобы выяснить, будет ли он в состоянии это осуществить, так как гены светлой шерсти и коротких ушей сцеплены очень тесно друг с другом, и если мышь несет оба гена в сцеплении в одной хромосоме и оба нормальных аллеломорфа в другой, то только 1 гамета приблизительно на 1000 будет нести ген светлой шерсти без гена коротких ушей.

1 (Ген розовых глаз отличается от гена альбиноса, обусловливающего белый цвет меха и розовый цвет глаз, и является фактически аллеломорфом гена шиншиллы )

Признаков у организма намного больше, чем хромосом.

У человека насчитывают 23 пары (46) хромосом.

Генов от 100 тыс. до 1 млн.

В каждой хромосоме находится много генов.

Гены наследуются сцепленно с хромосомой.

Наследование генов, локализованных в одной хромосоме, называется сцепленным наследованием.

Гены, локализованные в одной хромосоме, образуют группу сцепления.

В гомологичных хромосомах находятся одинаковые гены, и группу сцепления составляют две гомологичные хромосомы.

Число групп сцепления равно гаплоидному числу хромосом.

Примеры групп сцепления:

человек - 23 группы сцепления (46 хромосом)

муха дрозофилы - 4 группы сцепления (8 хромосом)

кенгуру - 6 групп сцепления (12 хромосом)

речной рак – 100 групп сцепления (200 хромосом)

Закономерности сцепленного наследования были изучены Томасом Морганом на мухах дрозофилах.

Во время мейоза при конъюгации гомологичные хромосомы обмениваются частями (кроссинговер)

Гены, находящиеся в одной хромосоме, сцеплены не абсолютно.

Перекомбинации (возникающие при неполном сцеплении генов в хромосомах) увеличивают возможность комбинативной изменчивости.

Вследствие кроссинговера отбор в процессе эволюции может идти не по целым группам сцепления, а по отдельным генам, что увеличивает резерв наследственной изменчивости и дает материал для отбора организмов

Частота кроссинговера выражается отношением числа кроссоверных особей к общему числу особей

Кроссинговер характеризует расстояние между генами.

Единица расстояния между генами, равная 1% кроссинговера, называется морганидой

При расстоянии в 50 морганид и более признаки наследуются независимо (несмотря на локализацию их в одной хромосоме)

Хромосомный механизм определения пола

Фенотипические различия между особями разного пола обусловлены генотипом.

Диплоидный набор хромосом называют кариотипом .

В женском и мужском кариотипе 23 пары (46) хромосом.

22 пары хромосом одинаковы - аутосомы.

23-я пара хромосом - половые хромосомы.

В женском кариотипе одинаковые XX-половые хромосомы.

В мужском организме XY- половые хромосомы (Y - хромосома очень мала и содержит мало генов).

Пол наследуется по законам Менделя

Пол, который образуют гаметы, одинаковые по половой хромосоме, называют гомогаметным.

Пол, образующий разные гаметы, называют гетерогаметным.

Сперматозоиды дают гаметы двух видов:

Половина содержит 22 аутосомы + Х (половая хромосома)

Половина содержит 22 аутосомы + Y (половая хромосома)

Пол будущего ребенка определяется в момент оплодотворения и зависит от того, каким сперматозоидом будет оплодотворена данная яйцеклетка.

Теоретически вероятность рождения мальчика и девочки равна 1:1 или 50%:50%.

На практике рождается больше мальчиков, но т.к. мужской организм имеет всего одну Х - хромосому, и все гены доминантные и рецессивные) проявляют свое действие, то мужской организм менее жизнеспособен.

Такое определение пола характерно для человека и млекопитающих.

1. У человека имеется два вида слепоты, и каждая определяется своим рецессивным аутосомным геном, которые не сцеплены. Какова вероятность рождения слепого ребенка, если отец и мать страдают одним и тем же видом слепоты и оба дигомозиготны? Какова вероятность рождения слепого ребенка, если оба родителя дигомозиготны и страдают разными видами наследственной слепоты?

Объяснение:

Первое скрещивание:

Р: ААвв х ААвв

Г: Ав х Ав

F1: ААвв - слепой ребенок.

Проявляется закон единообразия. Вероятность рождения слепого ребенка - 100%.

Второе скрещивание:

Р: ААвв х ааВВ

Г: Ав х аВ

F1: АаВв - здоровый ребенок.

Проявляется закон единообразия. Оба вида слепоты отсутствуют. Вероятность рождения слепого ребенка - 0%.

2. У человека дальтонизм обусловлен сцепленным с Х-хромосомой рецессивным геном. Талассемия наследуется как аутосомный доминантный признак и наблюдается в двух формах: у гомозигот - тяжелая, часто смертельная, у гетерозигот - в легкой форме.

Женщина с легкой формой талассемии и нормальным зрением в браке с мужчиной-дальтоником, но здоровым по гену талассемии, имеет сына-дальтоника с легкой формой талассемии. Какова вероятность рождения у этой пары детей с обеими аномалиями? Определите генотипы и фенотипы возможного потомства.

Объяснение:

Р: АаХDХd х ааХdУ

Г: АХD, аХd, AXd, aXD х аХd, аУ

F1: АаХdУ - мальчик-дальтоник с легкой формой талассемии

AaXDXd - девочка с нормальным зрением и легкой формой талассемии

aaXdXd - девочка-дальтоник без талассемии

AaXdXd - девочка-дальтоник с легкой формой талассемии

aaXDХd - девочка с нормальным зрением без талассемии

AaXDY - мальчик с нормальным зрением и легкой формой талассемии

aaXdY - мальчик-дальтоник без талассемии

aaXDY - мальчик с нормальным зрением и без талассемии

То есть получается восемь вариантов генотипа с равной вероятностью появления. Вероятность рождения ребенка с легкой формой талассемии и дальтонизмом составляет 2/8 или 25% (12,5% вероятность рождения мальчика и 12,5% - рождения девочки). Вероятность рождения ребенка-дальтоника с тяжелой формой талассемии - 0%.

3. В брак вступили голубоглазый светловолосый мужчина и дигетерозиготная кареглазая темноволосая женщина. Определите генотипы супружеской пары, а также возможные генотипы и фенотипы детей. Установите вероятность рождения ребенка с дигомозиготным генотипом.

Объяснение: А - карие глаза

а - голубые глаза

В - темные волосы

в - светлые волосы

Р: аавв х АаВв

Г: ав х АВ, ав, Ав, аВ

F1: АаВв - карие глаза, темные волосы

аавв - голубые глаза, светлые волосы

Аавв - карие глаза, светлые волосы

ааВв - голубые глаза, темные волосы

Вероятность рождения ребенка с каждым из генотипов - 25%. (и вероятность рождения ребенка с дигомозиготным генотипом (аавв) - 25%)

Признаки не сцеплены с полом. Здесь проявляется закон независимого наследования.

4. При скрещивании серой (а) мохнатой крольчихи с черным мохнатым кроликом в потомстве наблюдалось расщепление: крольчата черные мохнатые и серые мохнатые. Во втором скрещивании фенотипически таких же кроликов получилось потомство: крольчата черные мохнатые, черные гладкошерстные, серые мохнатые, серые гладкошерстные. Какой закон наследственности проявляется в данных скрещиваниях?

Объяснение:

А - черная окраска

а - серая окраска

В - мохнатый кролик

в - гладкошерстный кролик

Первое скрещивание:

Р: ааВВ х АаВВ

F1: АаВВ - черные мохнатые крольчата

ааВВ - серые мохнатые крольчата

Второе скрещивание:

Р: ааВв х АаВв

Г: аВ, ав х АВ, ав, Ав, аВ

F1: получается 8 генотипов и 4 фенотипа

АаВВ, 2АаВв - серые мохнатые крольчата

Аавв - черные гладкошерстные крольчата

ааВВ, ааВв - серые мохнатые крольчата

аавв - серые гладкошерстные крольчата

В данном случае действует закон независимого наследования, так как представленные признаки наследуются независимо.

5. Для хохлатой (А) зеленой (В) самки провели анализирующее скрещивание, в потомстве получилось четыре фенотипических класса. Получившихся хохлатых потомков скрестили между собой. Может ли в этом скрещивании получить потомство без хохолка? Если может, то какого оно будет пола, какого фенотипа? У канареек наличие хохолка зависит от аутосомного гена, окраска оперения (зеленое или коричневое) - от гена, сцепленного с Х-хромосомой. Гетерогаметным полом у птиц является женский пол.

Объяснение:

Первое скрещивание:

Р: АаХВУ х ааХвХв

Г: АХВ, аХВ, АУ, аУ х аХв

F1: АаХВХв - хохлатый зеленый самец

ааХВХв - зеленый самец без хохолка

АаХвУ - хохлатая коричневая самка

Скрещиваем самца и самку с хохолком:

Р: АаХВХв х АаХвУ

Г: АХВ, АХв, аХВ, аХв х АХв, АУ, аХв, аУ

F2: получаем 16 генотипов, среди которых можно выделить только 4 фенотипа.

Фенотипы особей без хохолка:

Самки: ааХВУ - зеленая самка без хохолка

ааХвУ - коричневая самка без хохолка

Самцы: ааХВХв - зеленый самец без хохолка

ааХвХв - коричневый самец без хохолка.

6. В скрещивании самок дрозофил с нормальными крыльями и нормальными глазами и самцов с редуцированными крыльями и маленькими глазами все потомство имело нормальные крылья и нормальные глаза. Получившихся в первом поколении самок возвратно скрещивали с исходной родительской особью. Форма крыльев у дрозофилы определяется аутосомным геном, ген размера глаз находится в Х-хромосоме. Составьте схемы скрещиваний, определите генотипы и фенотипы родительских особей и потомства в скрещиваниях. Какие законы действуют в скрещиваниях?

Объяснение:

А - нормальные крылья

а - редуцированные крылья

ХВ - нормальные глаза

Первое скрещивание:

Р: ААХВХВ х ввХвУ

Г: АХВ х аХв, аУ

АаХВХв - нормальные крылья, нормальные глаза

АаХВУ - нормальные крылья, нормальные глаза

Второе скрещивание:

Р: АаХВХв х ааХвН

Г: АХВ, аХв, АХв, аХв х аХв, аУ

АаХВХв, АаХВУ - нормальные крылья, нормальные глаза

ааХвХв, ааХвУ - редуцированные крылья, маленькие глаза

АаХвХв, АаХвУ - нормальные крылья, маленькие глаза

ааХВХв, ааХВУ - редуцированные крылья, нормальные глаза

Здесь действует закон сцепленного с полом наследования (ген формы глаз наследуется с Х-хромосомой), а ген крыльев наследуется независимо.

7. При скрещивании мухи дрозофилы, имеющей серое тело (А) и нормальные крылья (В), с мухой, имеющей черное тело и закрученные крылья, получено 58 мух с серым телом и нормальными крыльями, 52 - с черным телом и закрученными крыльями, 15 - с серым телом и закрученными крыльями, 14 - с черным телом и нормальными крыльями. Составьте схему решения задачи. Определите генотипы родительских особей, потомства. Объясните формирование четырех фенотипических классов. Какой закон действует в данном случае?

Объяснение: А - серое тело

а - черное тело

В - нормальные крылья

в - закрученные крылья

Скрещивание: Р: АаВв х аавв

Г: АВ, ав, Ав, аВ х ав

F1: АаВв - серое тело, нормальные крылья - 58

аавв - черное тело, закрученные крылья - 52

Аавв - серое тело, закрученные крылья - 15

ааВв - черное тело, нормальные крылья - 14

Гены А и В и а и в сцеплены, поэтому они они образуют группы 58 и 52 особи, а в случае остальных двух групп произошел кроссинговер и эти гены перестали быть сцеплены, поэтому и образовали 14 и 15 особей.

8. При анализирующем скрещивании дигетерозиготного высокого с круглыми плодами растения томата получено расщепление потомства по фенотипу: 38 растений высоких с округлыми плодами, 10 - высоких с грушевидными плодами, 10 - карликовых с округлыми плодами, 42 - карликовых с грушевидными плодами. Составьте схему скрещивания, определите генотипы и фенотипы исходных особей, потомства. Объясните формирование четырех фенотипических классов.

Объяснение:

А - высокое растение

а - карликовое растение

В - круглые плоды

в - грушевидные плоды

Р: АаВв х аавв

G: АВ, ав, аВ, Ав х ав

F1: АаВв - высокие растения с круглыми плодами - 38

аавв - карликовые растения с грушевидными плодами - 42

ааВв - карликовые растения с круглыми плодами - 10

Аавв - высокие растения с грушевидными плодами - 10

Здесь можно выделить две группы признаков:

1. АаВв и аавв - в первом случае наследуются сцепленно А и В, а во втором - а и в.

2. ааВв и Аавв - здесь произошел кроссинговер.

9. У человека нерыжие волосы доминируют над рыжими. Отец и мать гетерозиготные рыжие. У них восемь детей. Сколько среди них может оказаться рыжих? Есть ли однозначный ответ на этот вопрос?

Объяснение: А - нерыжие волосы

а - рыжие волосы

Р: Аа х Аа

Г: А, а х А, а

F1: АА: 2Аа: аа

Расщепление по генотипу - 1:2:1.

Расщепление по фенотипу - 3:1. Следовательно, вероятность рождения нерыжего ребенка - 75%. Вероятность рождения рыжего ребенка - 25%.

Однозначного ответа на вопрос нет, так как невозможно предположить генотип будущего ребенка, так как могут встретиться половые клетки с разными генотипами.

10. Определите генотипы родителей в семье, где все сыновья дальтоники, а дочери здоровы.

Объяснение: XDXd - здоровая девочка

XdY - мальчик - дальтоник

Такая ситуация будет более возможна если мать-дальтоник (так как женский пол гомогаметный), а отец - здоров (гетерогаметный пол).

Напишем схему скрещивания.

P: XdXd x XDY

G: Xd x XD, Y

F1: XDXd - девочка здоровая, но носитель гена дальтонизма.

XdY - мальчик-дальтоник

11. У человека глаукома наследуется как аутосомно-рецессивный признак (а), а синдром Марфана, сопровождающийся аномалией в развитии соединительной ткани, - как аутосомно-доминантный признак (В). Гены находятся в разных парах аутосом. Один из супругов страдает глаукомой и не имел в роду предков с синдромом Марфана, а второй дигетерозиготен по данным признакам. Определите генотипы родителей, возможные генотипы и фенотипы детей, вероятность рождения здорового ребенка. Составьте схему решения задачи. Какой закон наследственности проявляется в данном случае?

Объяснение: глаукома - рецессивный признак и проявляется только при гомозиготе, а синдром Марфана проявляется как при гетеро-, так и при гомозиготе, но является доминантным признак, соответственно, определим генотипы родителей: один родитель страдает глаукомой - аа, но не страдает синдромом Марфана - вв, а второй родитель по обоим признакам гетерозиготен - АаВв.

Р: аавв х АаВв

G: ав х АВ, ав, Ав, аВ

F1: АаВв - нормальное зрение + синдром Марфана

аавв - глаукома

Аавв - нормальное зрение, нет синдрома Марфана - здоровый ребенок

ааВв - глаукома + синдром Марфана

Нарисовав решетку Пеннета, можно увидеть, что вероятность рождения каждого ребенка одинакова - 25%, значит и вероятность рождения здорового ребенка будет такая же.

Гены данных признаков не являются сцепленными, а значит проявляется закон независимого наследования.

12. Скрестили низкорослые (карликовые) растения томата с ребристыми плодами и растения нормальной высоты с гладкими плодами. В потомстве были получены две фенотипические группы растений: низкорослые и гладкими плодами и нормальной высоты с гладкими плодами. При скрещивании растений томата низкорослых с ребристыми плодами с растениями, имеющими нормальную высоту стебля и ребристые плоды, все потомство имело нормальную высоту стебля и ребристые плоды. Составьте схемы скрещивания. Определите генотипы родителей и потомства растений томата в двух скрещиваниях. Какой закон наследственности проявляется в данном случае?

Объяснение: в первом скрещивании дигомозигота скрещивается с гомозиготным растением по одному признаку и гетерозиготным по другому (чтобы это понять, нужно написать несколько вариантов, данное потомство получается только при таких родителях). во втором скрещивании все проще - скрещивается две дигомозиготы (только у второго родителя один признак будет доминантным).

а - низкорослые особи

А - нормальная высота

в - ребристые плоды

В - гладкие плоды

P: аавв х АаВВ

F1: ааВв - низкорослые особи с гладкими плодами

АаВв - нормальная высота, гладкие плоды

P: аавв х ААвв

F1: Аавв - нормальная высота, гладкие плоды.

В обоих случаях проявляется закон независимого наследования, так как эти два признака наследуются независимо.

13. По изображенной на рисунке родословной определите и объясните характер наследования признака, выделенного черным цветом. Определите генотипы родителей, потомков, обозначенных на схеме цифрами 2, 3, 8, и объясните их формирование.

Объяснение: так как в первом поколении мы видим единообразие, а во втором поколении - расщепление 1:1, делаем вывод, что оба родителя были гомозиготны, но один по рецессивному признаку, а другой - по доминантному. То есть в первом поколении все дети - гетерозиготны. 2 - Аа, 3 - Аа, 8 - аа.

14. При скрещивании пестрой хохлатой (В) курицы с таким же петухом было получено восемь цыплят: четыре цыпленка пестрых хохлатых, два - белых (а) хохлатых и два - черных хохлатых. Составьте схему решения задачи. Определите генотипы родителей и потомства, объясните характер наследования признаков и появление особей с пестрой окраской. Какие законы наследственности проявляются в данном случае?

Объяснение: такое расщепление возможно только если родители гетерозиготны по окраске, то есть пестрая окраска имеет генотип - Аа

АА - черная окраска

аа - белая окраска

Аа - пестрая окраска

P: АаВВ х АаВВ

G: АВ, аВ

F1: АаВВ - пестрый хохлатый (4 цыпленка)

ааВВ - белый хохлатый (два цыпленка)

ААВВ - черный хохлатый

По окраске расщепление по генотипу и фенотипу одинаковое: 1:2:1, так как здесь присутствует явление неполного доминирования (между и черной и белой окраской появляется промежуточный вариант), признаки наследуются независимо.

15. У человека ген нормального слуха (В) доминирует над геном глухоты и находится в аутосоме; ген цветовой слепоты (дальтонизм - d) рецессивный и сцеплен с Х-хромосомой. В семье, где мать страдала глухотой, но имела нормальное цветовое зрение, а отец - с нормальным слухом (гомозиготен), дальтоник, родилась девочка-дальтоник с нормальным слухом. Составьте схему решения задачи. Определите генотипы родителей, дочери, возможные генотипы детей и вероятность в будущем рождения в этой семье детей-дальтоников с нормальным слухом и глухих.

Объяснение: из условия задачи видно, что мать гетерозиготна по гену глухоты и гомозиготна по гену слепоты, а отец - имеет ген слепоты и гетерозиготен по гену глухоты. Тогда дочь будет гомозиготна по гену слепоты и гетерозиготна по гену глухоты.

P: (мать)XDXd x (отец)XdYBB

дочь - XdXdBb - дальтоник, слух нормальный

Гаметы - XDb, Xdb, XdB, YB

Дети: XDXdBb - нормальное зрение, нормальный слух

XDYBb - нормальное зрение, нормальный слух

XdXdBb - дальтоник, нормальный слух

XdYBb - дальтоник, нормальный слух

Расщепление: 1:1:1:1, то есть вероятность рождения дальтоника с нормальным слухом - 50%, а вероятность рождения глухих дальтоников - 0%.

16. У мужа и жены нормальное зрение, несмотря на то, что отцы обоих супругов страдают цветовой слепотой (дальтонизмом). Ген дальтонизма рецессивен и сцеплен с Х-хромосомой. Определите генотипы мужа и жены. Составьте схему решения задачи. Какова вероятность рождения у них сына с нормальным зрением, дочери с нормальным зрением, сына-дальтоника, дочери-дальтоника?

Объяснение: допустим матери мужа и жены были здоровы.

Распишем еще и возможные генотипы родителей мужа и жены.

P: XDXD x XdY XDXD x XdY

↓ ↓

XDXd x XDY

Возможные генотипы детей:

XDXD - здоровая девочка

XDY - здоровый мальчик

XDXd - здоровая девочка

XdY - мальчик-дальтоник

Вероятность рождения ребенка с каждым из генотипов равна 25%. Вероятность рождения здоровой девочки - 50% (в одном случае ребенок гетерозиготен, в другом - гомозиготен). Вероятность рождения девочки-дальтоника - 0%. Вероятность рождения мальчика-дальтоника - 25%.

17. У гороха посевного желтая окраска семян доминирует над зеленой, выпуклая форма плодов - над плодами с перетяжкой. При скрещивании растения с желтыми выпуклыми плодами с растением, имеющим желтые семена и плоды с перетяжкой, получили 63 растения с желтыми семенами и выпуклыми плодами. 58 - с желтыми семенами и плодами с перетяжкой, 18 - с зелеными семенами и выпуклыми плодами и 20 - с зелеными семенами и плодами с перетяжкой. Составьте схему решения задачи. Определите генотипы исходных растений и потомков. Объясните появление различных фенотипических групп.

Объяснение:

А - желтая окраска

а - зеленая окраска

В - выпуклая форма

в - плоды с перетяжкой

Внимательно прочитав условие задачи, можно понять, что одно родительское растение является дигетерозиготным, а второй - гомозиготно по форме плода, а гетерозиготно по цвету семени.

Напишем схему решения задачи:

P: АаВв х Аавв

G: АВ, ав, Ав, аВ х Ав, ав

F1: получается расщепление 3:1 и следующие потомки первого поколения:

63 - А_Вв - желтые семена, выпуклые плоды

58 - А_вв - желтые семена, плоды с перетяжкой

18 - ааВв - зеленые семена, выпуклая форма плода

20 - аавв - зеленые семена, плоды с перетяжкой

Здесь наблюдаем закон независимого наследования, так как каждый признак наследуется независимо.

18. У львиного зева красная окраска цветков неполно доминирует над белой, а узкие листья над широкими. Гены располагаются в разных хромосомах. Скрещиваются растения с розовыми цветками и листьями промежуточной ширины с растениями, имеющими белые цветки и узкие листья. Составьте схему решения задачи. Какое потомство и в каком соотношении можно ожидать от этого скрещивания? Определите тип скрещивания, генотипы родителей и потомства. Какой закон имеет место в данном случае.

Объяснение: АА - красная окраска

Аа - розовая окраска

аа - белая окраска

ВВ - узкие листья

Вв - листья промежуточной ширины

вв - широкие листья

Скрещивание:

Р: АаВв х ааВВ

Г: АВ, ав, Ав, аВ х аВ

F1: АаВВ - розовые цветки, узкие листья

ааВв - белые цветки, листья промежуточной ширины

АаВв - розовые цветки, листья промежуточной ширины

ааВВ - белые цветки, узкие листья

Вероятность появления цветков с каждым из генотипов - 25%.

Скрещивание дигибридное (так как анализ идет по двум признакам).

В данном случае действуют законы неполного доминирования и независимого наследования признаков.

Задания для самостоятельного решения

1. У собак черная шерсть доминирует над коричневой, а длинная шерсть над короткой (гены не сцеплены). От черной длинношерстной самки при анализирующем скрещивании получено потомство: 3 черных длинношерстных щенка, 3 коричневых длинношерстных. Определите генотипы родителей и потомства, соответствующие их фенотипам. Составьте схему решения задачи. Объясните полученные результаты.

2. У овец серая окраска (А) шерсти доминирует над черной, а рогатость (В) - над комолостью (безрогостью). Гены не сцеплены. В гомозиготном состоянии ген серой окраски вызывает гибель эмбрионов. Какое жизнеспособное потомство (по фенотипу и генотипу) и в каком соотношении можно ожидать от скрещивания дигетерозиготной овцы с гетерозиготным серым комолым самцом? Составьте схему решения хадачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

3. У кукурузы рецессивный ген "укороченные междоузлия" (b) находится в одной хромосоме с рецессивным геном "зачаточная метелка" (v). При проведении анализирующего скрещивания дигетерозиготного растения, имеющего нормальные междоузлия и нормальную метелку, получено потомство: 48% с нормальными междоузлиями и нормальной метелкой, 48% с укороченными междоузлиями и зачаточной метелкой, 2% с нормальными междоузлиями и зачаточной метелкой, 2% с укороченными междоузлиями и нормальной метелкой. Определите генотипы родителей и потомства. Составьте схему решения задачи. Объясните полученные результаты. Какой закон наследственности проявляется в данном случае?

4. При скрещивании растения кукурузы с гладкими окрашенными семенами с растением, дающим морщинистые неокрашенные семена (гены сцеплены), потомство оказалось с гладкими окрашенными семенами. При анализирующем скрещивании гибридов из F1 получены растения с гладкими окрашенными семенами, с морщинистыми неокрашенными, с морщинистыми окрашенными, с гладкими неокрашенными. Составьте схему решения задачи. Определите генотипы родителей, потомства F1 и F2. Какие законы наследственности проявляются в данных скрещиваниях? Объясните появление четырех фенотипических групп особей в F2?

5. При скрещивании растения кукурузы с гладкими окрашенными семенами с растением, имеющим морщинистые неокрашенные семена (гены сцеплены), потомство оказалось с гладкими окрашенными семенами. При дальнейшем анализирующем скрещивании гибрида из F1 получены растения с семенами: 7115 с гладкими окрашенными, 7327 с морщинистыми неокрашенными, 218 с морщинистыми окрашенными, 289 с гладкими неокрашенными. Составьте схему решения задачи. Определите генотипы родителей, потомства F1, F2. Какой закон наследственности проявляется в F2? Объясните, на чем основан ваш ответ.

6. У человека катаракта (заболевание глаз) зависит от доминантного аутосомного гена, а ихтиоз (заболевание кожи) - от рецессивного гена, сцепленного с Х-хромосомой. Женщина со здоровыми глазами и с нормальной кожей, отец которой страдал ихтиозом, выходит замуж за мужчину, страдающего катарактой и со здоровой кожей, отец которого не имел этих заболеваний. Составьте схему решения задачи. Определите генотипы родителей, возможные генотипы и фенотипы детей. Какие законы наследственности проявляются в данном случае?

7. При скрещивании белых кроликов с мохнатой шерстью и черных кроликов с гладкой шерстью получено потомство: 50% черных мохнатых и 50% черных гладких. При скрещивании другой пары белых кроликов с мохнатой шерстью и черных кроликов с гладкой шерстью 50% потомства оказалось черных мохнатых и 50% - белых мохнатых. Составьте схему каждого скрещивания. Определите генотипы родителей и потомства. Объясните, какой закон проявляется в данном случае?

8. При скрещивании растения арбуза с длинными полосатыми плодами с растением, имеющим круглые зеленые плоды, в потомстве получили растения с длинными зелеными и круглыми зелеными плодами. При скрещивании такого же арбуза с длинными полосатыми плодами с растением, имеющим круглые полосатые плоды, все потомство имело круглые полосатые плоды. Составьте схему каждого скрещивания. Определите генотипы родителей и потомства. Как называется такое скрещивание и для чего оно проводится?

9. Темноволосая голубоглазая женщина, дигомозиготная, вступила в брак с темноволосым голубоглазым мужчиной, гетерозиготным по первой аллели. Темный цвет волос и карие глаза - это доминантные признаки. Определите генотипы родителей и потомства, типы гамет и вероятные генотипы детей.

10. Темноволосая женщина с кудрявыми волосами, гетерозиготная по первому признаку вступила в брак с мужчиной, имеющим темные шладкие волосы, гетерозиготным по первой аллели. Темные и кудрявые волосы - это доминантные признаки. Определите генотипы родителей, типы гамет, которые они вырабатывают, вероятные генотипы и фенотипы потомства.

11. Темноволосая кареглазая женщина, гетерозиготная по первой аллели вступила в брак со светловолосым кареглазым мужчиной, гетерозиготным по второму признаку. Темные волосы и карие глаза - доминантные признаки, светлые волосы и голубые глаза - рецессивные признаки. Определите генотипы родителей и гаметы, которые они вырабатывают, вероятные генотипы и фенотипы потомства.

12. Скрестили красноглазую серую (А) дрозофилу, гетерозиготную по двум аллелям, с красноглазой черной (ХВ) дрозофилой, гетерозиготной по первой аллели. Определите генотипы родителей, гаметы, которые они вырабатывают, численное соотношение расщепления потомства по генотипу и фенотипу.

13. Черную мохнатую крольчиху, гетерозиготную по двум аллелям скрестили с белым мохнатым кроликом, гетерозиготным по второй аллели. Черный мохнатый мех - доминантные признаки, белый гладкий мех - рецессивные признаки. Определите генотипы родителей и гаметы, которые они вырабатывают, численное соотношение расщепление потомства по фенотипу.

14. У матери 3-я группа крови и положительные резус-фактор, а у отца - 4-я группа крови и резус-фактор отрицательные. Определите генотипы родителей, гаметы, которые они вырабатывают, и возможные генотипы детей.

15. От черной кошки родился один черепаховый и несколько черных котят. Указанные признаки сцеплены с полом, то есть гены окраски находятся только в половых Х-хромосомах. Ген черной окраски и ген рыжей окраски дает неполное доминирование, при сочетании этих двух генов получается черепаховая окраска. Определите генотип и фенотип отца, гаметы, которые вырабатывают родители, пол котят.

16. Гетерозиготную серую самку дрозофилы скрестили с серым самцом. Указанные признаки сцеплены с полом, то есть гены находятся только в половых Х-хромосомах. Серая окраска тела доминирует над желтой. Определите генотипы родителей, гаметы. которые они вырабатывают, и численное расщепление потомства по полу и окраске тела.

17. У томата гены, обусловливающие высокий рост растения (А) и круглую форму плода (В), сцеплены и локализованы в одной хромосоме, а гены, обусловливающие низкий рост и грушевидную форму, - в аутосоме. Скрестили гетерозиготное растение томата, имеющее высокий рост и круглую форму плода, с низким грушеплодным растением. Определите генотипы и фенотипы потомства родителей, гаметы, образующиеся в мейозе, если перекреста хромосом не было.

18. У дрозофилы доминантные гены нормального крыла и серой окраски тела сцеплены и локализованы в одной хромосоме, а рецессивные гены зачаточности крыла и черной окраски тела - в другой гомологичной хромосоме. Скрестили двух дигетерозиготных дрозофил, имеющих нормальные крылья и серую окраску тела. Определите генотип родителей и гаметы, образующиеся без перекреста хромосом, а также численное соотношение расщепления потомства по генотипу и фенотипу.

19. Каковы генотипы родителей и детей, если у светловолосой матери и темноволосого отца в браке родилось пять детей, все темноволосые? Какой закон наследственности проявляется?

20. Каковы генотипы родителей и потомства, если от скрещивания коровы с красной окраской шерсти с черным быком все потомство получено черное? Определите доминантный и рецессивный гены и характер доминирования.

21. Какие фенотипы и генотипы возможны у детей, если у матери первая группа крови и гомозиготный резус-положительный фактор, а у отца четвертая группа крови и резус-отрицательный фактор (рецессивный признак)? Определите вероятность рождения детей с каждым из указанных признаков.

22. В семье родился голубоглазый ребенок, похожий по этому признаку на отца. Мать у ребенка кареглазая, бабушка по материнской линии - голубоглазая, а дедушка - кареглазый. По отцовской линии бабушка и дедушка - кареглазые. Определите генотипы родителей и бабушки с дедушкой по отцовской линии. Какова вероятность рождения в этой семье кареглазого ребенка?

23. Женщина со светлыми волосами и прямым носом вступила в брак с мужчиной, имеющим темные волосы и римский нос, гетерозиготный по первому признаку и гомозиготный по второму. Темные волосы и римский нос - доминантные признаки. Каковы генотипы и гаметы родителей? Каковы вероятные генотипы и фенотипы детей?

24. От черепаховой кошки родилось несколько котят, один из которых оказался рыжей кошкой. У кошек гены окраски шерсти сцеплены с полом и находятся только в Х-хромосомах. Черепаховая окраска шерсти возможна при сочетании гена черной и рыжей окраски. Определите генотипы родителей и фенотип отца, а также генотипы потомства.

25. Гетерозиготную серую самку дрозофилы скрестили с серым самцом. Определите гаметы, вырабатываемые родителями, а также численное соотношение расщепления гибридов по фенотипу (по полу и окраске тела) и генотипу. Указанные признаки сцеплены с полом и находятся только в Х-хромосомах. Серая окраска тела - доминантный признак.

26. У кукурузы доминантные гены коричневой окраски и гладкой формы семян сцеплены и локализованы в одной хромосоме, а рецессивные гены белой окраски и морщинистой формы - в другой гомологичной хромосоме. Какое по генотипу и фенотипу потомство следует ожидать при скрещивании дигетерозиготного растения с белыми гладкими семенами с растением, имеющим белые морщинистые семена. Кроссинговер в мейозе не произошел. Определите гаметы, вырабатываемые родителями.

27. У кукурузы доминантные гены коричневой окраски и гладкой формы семян сцеплены и локализованы в одной хромосоме, а рецессивные гены белой окраски и морщинистой формы - в другой гомологичной хромосоме. Какое по генотипу и фенотипу потомство следует ожидать при скрещивании дигетерозиготного растения с белыми гладкими семенами с гомозиготным растением, имеющим темные гладкие семена. В мейозе происходит кроссинговер. Определите гаметы, вырабатываемые родителями, без кроссинговера и после кроссинговера.

28. При скрещивании мохнатой белой крольчихи с мохнатым черным кроликом в потомстве появился один гладкий белый крольчонок. Определите генотипы родителей. В каком численном соотношении можно ожидать расщепление потомства по генотипу и фенотипу?

29. Охотник купил собаку, которая имеет короткую шерсть. Ему важно знать, что она чистопородна. Какие действия помогут охотнику определить, что его собака не несет рецессивных генов - длинной шерсти? Составьте схему решения задачи и определите соотношение генотипов потомства, полученного от скрещивания чистопородной собаки с гетерозиготной.

30. Мужчина страдает гемофилией. Родители его жены здоровы по этому признаку. Ген гемофилии (h) находится в половой Х-хромосоме. Составьте схему решения задачи. Определите генотипы супружеской пары, возможного потомства, вероятность рождения дочерей-носительниц этого заболевания.

31. Гипертрихоз передается у человека с У-хромосомой, а полидактилия (многопалость) - аутосомный доминантный признак. В семье, где отец имел гипертрихоз, а мать - полидактилию, родилась нормальная дочь. Составьте схему решения задачи и определите генотип рожденной дочери и вероятность того, что следующий ребенок будет с двумя аномальными признаками.

32. Скрестили дигетерозиготные растения томатов с округлыми плодами (А) и с опушенными листьями (В) с растениями, имеющими овальные плоды и неопушенный эпидермис листа. Гены, отвечающие за строение эпидермиса листа и форму плодов, наследуются сцепленно. Составьте схему решения задачи. Определите генотипы родителей, генотипы и фенотипы потомства, вероятность появления в потомстве растений с рецессивными признаками.

33. При скрещивании томата с пурпурным стеблем (А) и красными плодами (В) и томата с зеленым стеблем и красными плодами получили 750 растений с пурпурным стеблем и красными плодами и 250 растений с пурпурным стеблем и желтыми плодами. Доминантные гены пурпурной окраски стебля и красного цвета плодов наследуются независимо. Составьте схему решения задачи. Определите генотипы родителей, потомства в первом поколении и соотношение генотипов и фенотипов у потомства.

34. Растение дурман с пурпурными цветками (А) и гладкими коробочками (в) скрестили с растением, имеющим пурпурные цветки и колючие коробочки. В потомстве получены следующие фенотипы: с пурпурными цветками и колючими коробочками, с пурпурными цветками и гладкими коробочками, с белыми цветками и колючими коробочками, с белыми цветками и гладкими коробочками. Составьте схему решения задачи. Определите генотипы родителей, потомства и возможное соотношение фенотипов. Установите характер наследования признаков.

35. Скрестили два растения львиного зева с красными и белыми цветками. Их потомство оказалось с розовыми цветками. Определите генотипы родителей, гибридов первого поколения и тип наследования признаков.

36. Скрещивается коричневая (а) длинношерстная (в) самка с гомозиготным черным (А) короткошерстным (В) самцом (гены не сцеплены). Составьте схему решения задачи и определите генотипы и соотношение по фенотипу потомков их первого поколения. Каково соотношение генотипов и фенотипов второго поколения от скрещивания дигетерозигот. Какие генетические закономерности проявляются в этом скрещивании?

37. У свиней черная окраска щетины (А) доминирует над рыжей, длинная щетина (В) - над короткой (гены не сцеплены). Скрестили черного с длинной щетиной дигетерозиготного самца с гомозиготной черной с короткой щетиной самкой. Составьте схему решения задачи. Определите генотипы родителей, потомства, фенотипы потомства и их соотношение.

38. Отсутствие малых коренных зубов у человека наследуется как доминантный аутосомный признак. Определите генотипы и фенотипы родителей и потомства, если один из супругов имеет малые коренные зубы, а другой гетерозиготен по этому гену. Составьте схему решения задачи и определите вероятность рождения детей, у которых отсутствуют малые коренные зубы.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием