Чему равен импульс системы. Импульс тела

ИМПУЛЬС ТЕЛА

Импульс тела - это физическая векторная величина, равная произведению массы тела на его скорость.

Вектор импульса тела направлен так же как и вектор скорости этого тела.

Под импульсом системы тел понимают сумму импульсов всех тел этой системы: ∑p=p 1 +p 2 +... . Закон сохранения импульса: в замкнутой системе тел при любых процессах ее импульс остается неизменным, т.е. ∑p = const.

(Замкнутой называется система тел, взаимодействующих только друг с другом и не взаимодействующих с другими телами.)

Вопрос2. Термодинамическое и статистическое определение энтропии. Второе начало термодинамики.

Термодинамическое определение энтропии

Понятие энтропии было впервые введено в 1865 году Рудольфом Клаузиусом. Он определил изменение энтропии термодинамической системы при обратимом процессе как отношение изменения общегоколичества тепла к величинеабсолютной температуры :

Эта формула применима только для изотермического процесса (происходящего при постоянной температуре). Её обобщение на случай произвольного квазистатического процесса выглядит так:

где - приращение (дифференциал) энтропии, а- бесконечно малое приращение количества теплоты.

Необходимо обратить внимание на то, что рассматриваемое термодинамическое определение применимо только к квазистатическим процессам (состоящим из непрерывно следующих друг за другом состояний равновесия).

Статистическое определение энтропии: принцип Больцмана

В 1877 году Людвиг Больцман нашёл, что энтропия системы может относиться к количеству возможных «микросостояний» (микроскопических состояний), согласующихся с их термодинамическими свойствами. Рассмотрим, например, идеальный газ в сосуде. Микросостояние определено как позиции и импульсы (моменты движения) каждого составляющего систему атома. Связность предъявляет к нам требования рассматривать только те микросостояния, для которых: (I) месторасположения всех частей расположены в рамках сосуда, (II) для получения общей энергии газа кинетические энергии атомов суммируются. Больцман постулировал, что:

где константу 1,38 · 10 −23 Дж/К мы знаем теперь как постоянную Больцмана, а является числом микросостояний, которые возможны в имеющемся макроскопическом состоянии (статистический вес состояния).

Второе начало термодинамики - физический принцип, накладывающий ограничение на направление процессов передачи тепла между телами.

Второе начало термодинамики гласит, что невозможен самопроизвольный переход тепла от тела, менее нагретого, к телу, более нагретому.

Билет 6.

  1. § 2.5. Теорема о движении центра масс

Соотношение (16) очень похоже на уравнение движения мате­риальной точки. Попробуем привести его к еще более простому виду F =ma . Для этого преобразуем левую часть, воспользовавшись свой­ствами операции дифференцирования (y+z) =­y +z , (ay) =ay , a=const:

(24)

Домножим и разделим (24) на массу всей системы и под­ставим в уравнение (16):

. (25)

Выражение, стоящее в скобках, имеет размерность длины и оп­ределяет радиус-вектор некоторой точки, которая называетсяцентром масс системы:

. (26)

В проекциях на оси координат (26) примет вид

(27)

Если (26) подставить в (25), то получим теорему о движении центра масс:

т.е. центр масс системы движется, как материальная точка, в которой сосредоточена вся масса системы, под действием суммы внешних сил, приложенных к системе. Теорема о движении центра масс утверждает, что какими бы сложными ни были силы вза­имодействия частиц системы друг с другом и с внешними телами и как бы сложно эти частицы ни двигались, всегда можно найти точку (центр масс), движение которой описывается просто. Центр масс некая геометрическая точка, положение которой определяется распре­делением масс в системе и которая может не совпадать ни с одной из ее материальных частиц.

Произведение массы системы на скорость v ц.м ее центра масс, как это следует из его определения (26), равно импульсу системы:

(29)

В частности, если сумма внешних сил равна нулю, то центр масс движется равномерно и прямолинейно или покоится.

Пример 1. В некоторой точке траектории снаряд разрывается на множество осколков (рис. 9). Как будет двигаться их центр масс?

Центр масс "полетит" по той же параболической траектории, по которой дви­гался бы неразорвавшийся снаряд: его ускорение в соот­ветствии с (28) определяется суммой всех сил тяжести, приложенных к ос­колкам, и общей их массой, т.е. тем же уравне­ни­ем, что и движение целого снаряда. Однако, как только первый оско­лок ударится о Землю, к внешним силам силам тяжести доба­вится сила реакции Земли и движение центра масс исказится.

Пример 2. На покоящееся тело начинает действовать "пара" сил F и F (рис. 10). Как будет двигаться тело?

Поскольку геометрическая сумма внешних сил равна нулю, ус­корение центра масс также равно нулю и он останется в покое. Тело будет вращаться вокруг неподвижного центра масс.

Есть ли какие-либо преимущества у закона сохранения импульса перед законами Ньютона? В чем сила этого закона?

Главное его достоинство в том, что он но­сит интегральный характер, т.е. связывает харак­теристики системы (ее импульс) в двух состоя­ниях, разделенных конечным проме­жутком вре­мени. Это позволяет получить важные сведения сразу о конечном со­стоянии системы, минуя рассмотрение всех промежуточных ее состо­яний и деталей происходящих при этом взаимодействий.

2) Скорости молекул газа имеют различные значения и направления, причем из-за огромного числа соударений, которые ежесекундно испытывает молекула, скорость ее постоянно изменяеться. Поэтому нельзя определить число молекул, которые обладают точно заданной скоростью v в данный момент времени, но можно подсчитать число молекул, скорости которых имеют значение, лежащие между некоторыми скоростями v 1 и v 2 . На основании теории вероятности Максвелл установил закономерность, по которой можно определить число молекул газа, скорости которых при данной температуре заключены в некотором интервале скоростей. Согласно распределению Максвелла, вероятное число молекул в единице объема; компоненты скоростей которых лежат в интервале от до, отдои отдо, определяются функцией распределения Максвелла

где m - масса молекулы, n - число молекул в единице объема. Отсюда следует, чтсг число молекул, абсолютные значения скоростей которых лежат в интервале от v до v + dv, имеет вид

Распределение Максвелла достигает максимума при скорости , т.е. такой скорсти, к которой близки скорости большинства молекул. Площадь заштрихованной полоски с основанием dV покажет, какая часть от общего числа молекул имеет скорости, лежащие в данном интервале. Конкретный вид функции распределения Максвелла зависит от рода газа (массы молекулы) и температуры. Давление и объем газа на распределение молекул по скоростям не влияет.

Кривая распределения Максвелла позволит найти среднюю арифметическую скорость

Таким образом,

С Повышением температуры наиболее вероятная скорость возрастает, поэтому максимум распределения молекул по скоростям сдвигается в сторону больших скоростей, а его абсолютная величина уменьшается. Следовательно, при нагревании газа доля молекул, обладающих малыми скоростями уменьшается, а доля молекул с большими скоростями увеличивается.

Распределение Больцмана

Это распределение по энергиям частиц (атомов, молекул) идеального газа в условиях термодинамического равновесия. Распределение Больцмана было открыто в 1868 - 1871 гг. австралийским физиком Л. Больцманом. Согласно распределению, число частиц n i с полной энергией E i равно:

n i =A ω i e ­E i /Kt (1)

где ω i - статистический вес (число возможных состояний частицы с энергией e i). Постоянная А находится из условия, что сумма n i по всем возможным значениям i равна заданному полному числу частиц N в системе (условие нормировки):

В случае, когда движение частиц подчиняется классической механике, энергию E i можно считать состоящей из кинетической энергии E iкин частицы (молекулы или атома), её внутренней энергии E iвн (напр., энергии возбуждения электронов) и потенциальной энергии E i , пот во внешнем поле, зависящей от положения частицы в пространстве:

E i = E i, кин + E i, вн + E i, пот (2)

Распределение частиц по скоростям является частным случаем распределения Больцмана. Оно имеет место, когда можно пренебречь внутренней энергией возбуждения

E i,вн и влиянием внешних полей E i,пот. В соответствии с (2) формулу (1) можно представить в виде произведения трёх экспонент, каждая из которых даёт распределение частиц по одному виду энергии.

В постоянном поле тяжести, создающем ускорение g, для частиц атмосферных газов вблизи поверхности Земли (или др. планет) потенциальная энергия пропорциональна их массе m и высоте H над поверхностью, т.е. E i, пот = mgH. После подстановки этого значения в распределение Больцмана и суммирования по всевозможным значениям кинетической и внутренней энергий частиц получается барометрическая формула, выражающая закон уменьшения плотности атмосферы с высотой.

В астрофизике, особенно в теории звёздных спектров, распределение Больцмана часто используется для определения относительной заселённости электронами различных уровней энергии атомов. Если обозначить индексами 1 и 2 два энергетических состояния атома, то из распределения следует:

n 2 /n 1 = (ω 2 /ω 1) e -(E 2 -E 1)/kT (3) (ф-ла Больцмана).

Разность энергий E 2 -E 1 для двух нижних уровней энергии атома водорода >10 эВ, а значение kT, характеризующее энергию теплового движения частиц для атмосфер звёзд типа Солнца, составляет всего лишь 0,3-1 эВ. Поэтому водород в таких звёздных атмосферах находится в невозбуждённом состоянии. Так, в атмосферах звёзд, имеющих эффективную температуру Тэ > 5700 К (Солнце и др. звёзды), отношение чисел атомов водорода во втором и основном состояниях равно 4,2 10 -9 .

Распределение Больцмана было получено в рамках классической статистики. В 1924-26 гг. была создана квантовая статистика. Она привела к открытию распределений Бозе - Эйнштейна (для частиц с целым спином) и Ферми - Дирака (для частиц с полуцелым спином). Оба эти распределения переходят в распределение, когда среднее число доступных для системы квантовых состояний значительно превышает число частиц в системе, т. о. когда на одну частицу приходится много квантовых состояний или, др. словами, когда степень заполнения квантовых состояний мала. Условие применимости распределении Больцмана можно записать в виде неравенства:

где N - число частиц, V - объём системы. Это неравенство выполняется при высокой темп-ре и малом числе частиц в ед. объёма (N/V). Из этого следует, что чем больше масса частиц, тем для более широкого интервала изменений Т и N/V справедливо распределение Больцмана..

билет 7.

Работа всех приложенных сил равна работе равнодействующей силы (см. рис. 1.19.1).

Между изменением скорости тела и работой, совершенной приложенными к телу силами, существует связь. Эту связь проще всего установить, рассматривая движение тела вдоль прямой линии под действием постоянной силы В этом случае векторы силыперемещенияскоростии ускорениянаправлены вдоль одной прямой, и тело совершает прямолинейное равноускоренное движение. Направив координатную ось вдоль прямой движения, можно рассматриватьF , s , υ и a как алгебраические величины (положительные или отрицательные в зависимости от направления соответствующего вектора). Тогда работу силы можно записать какA = Fs . При равноускоренном движении перемещение s выражается формулой

Это выражение показывает, что работа, совершенная силой (или равнодействующей всех сил), связана с изменением квадрата скорости (а не самой скорости).

Физическая величина, равная половине произведения массы тела на квадрат его скорости, называется кинетической энергией тела:

Это утверждение называют теоремой о кинетической энергии . Теорема о кинетической энергии справедлива и в общем случае, когда тело движется под действием изменяющейся силы, направление которой не совпадает с направлением перемещения.

Кинетическая энергия – это энергия движения. Кинетическая энергия тела массой m , движущегося со скоростью равна работе, которую должна совершить сила, приложенная к покоящемуся телу, чтобы сообщить ему эту скорость:

В физике наряду с кинетической энергией или энергией движения важную роль играет понятие потенциальной энергии или энергии взаимодействия тел .

Потенциальная энергия определяется взаимным положением тел (например, положением тела относительно поверхности Земли). Понятие потенциальной энергии можно ввести только для сил, работа которых не зависит от траектории движения и определяется только начальным и конечным положениями тела . Такие силы называются консервативными .

Работа консервативных сил на замкнутой траектории равна нулю . Это утверждение поясняет рис. 1.19.2.

Свойством консервативности обладают сила тяжести и сила упругости. Для этих сил можно ввести понятие потенциальной энергии.

Если тело перемещается вблизи поверхности Земли, то на него действует постоянная по величине и направлению сила тяжести Работа этой силы зависит только от вертикального перемещения тела. На любом участке пути работу силы тяжести можно записать в проекциях вектора перемещенияна осьOY , направленную вертикально вверх:

Эта работа равна изменению некоторой физической величины mgh , взятому с противоположным знаком. Эту физическую величину называют потенциальной энергией тела в поле силы тяжести

Потенциальная энергия E р зависит от выбора нулевого уровня, т. е. от выбора начала координат оси OY . Физический смысл имеет не сама потенциальная энергия, а ее изменение ΔE р = E р2 – E р1 при перемещении тела из одного положения в другое. Это изменение не зависит от выбора нулевого уровня.

Если рассматривать движение тел в поле тяготения Земли на значительных расстояниях от нее, то при определении потенциальной энергии необходимо принимать во внимание зависимость силы тяготения от расстояния до центра Земли (закон всемирного тяготения ). Для сил всемирного тяготения потенциальную энергию удобно отсчитывать от бесконечно удаленной точки, т. е. полагать потенциальную энергию тела в бесконечно удаленной точке равной нулю. Формула, выражающая потенциальную энергию тела массой m на расстоянии r от центра Земли, имеет вид (см. §1.24 ):

где M – масса Земли, G – гравитационная постоянная.

Понятие потенциальной энергии можно ввести и для силы упругости. Эта сила также обладает свойством консервативности. Растягивая (или сжимая) пружину, мы можем делать это различными способами.

Можно просто удлинить пружину на величину x , или сначала удлинить ее на 2x , а затем уменьшить удлинение до значения x и т. д. Во всех этих случаях сила упругости совершает одну и ту же работу, которая зависит только от удлинения пружины x в конечном состоянии, если первоначально пружина была недеформирована. Эта работа равна работе внешней силы A , взятой с противоположным знаком (см. §1.18 ):

Потенциальная энергия упруго деформированного тела равна работе силы упругости при переходе из данного состояния в состояние с нулевой деформацией.

Если в начальном состоянии пружина уже была деформирована, а ее удлинение было равно x 1 , тогда при переходе в новое состояние с удлинением x 2 сила упругости совершит работу, равную изменению потенциальной энергии, взятому с противоположным знаком:

Во многих случаях удобно использовать молярную теплоемкость C:

где M – молярная масса вещества.

Определенная таким образом теплоемкость не является однозначной характеристикой вещества. Согласно первому закону термодинамики изменение внутренней энергии тела зависит не только от полученного количества теплоты, но и от работы, совершенной телом. В зависимости от условий, при которых осуществлялся процесс теплопередачи, тело могло совершать различную работу. Поэтому одинаковое количество теплоты, переданное телу, могло вызвать различные изменения его внутренней энергии и, следовательно, температуры.

Такая неоднозначность определения теплоемкости характерна только для газообразного вещества. При нагревании жидких и твердых тел их объем практически не изменяется, и работа расширения оказывается равной нулю. Поэтому все количество теплоты, полученное телом, идет на изменение его внутренней энергии. В отличие от жидкостей и твердых тел, газ в процессе теплопередачи может сильно изменять свой объем и совершать работу. Поэтому теплоемкость газообразного вещества зависит от характера термодинамического процесса. Обычно рассматриваются два значения теплоемкости газов: C V – молярная теплоемкость в изохорном процессе (V = const) и C p – молярная теплоемкость в изобарном процессе (p = const).

В процессе при постоянном объеме газ работы не совершает: A = 0. Из первого закона термодинамики для 1 моля газа следует

где ΔV – изменение объема 1 моля идеального газа при изменении его температуры на ΔT. Отсюда следует:

где R – универсальная газовая постоянная. При p = const

Таким образом, соотношение, выражающее связь между молярными теплоемкостями C p и C V , имеет вид (формула Майера):

Молярная теплоемкость C p газа в процессе с постоянным давлением всегда больше молярной теплоемкости C V в процессе с постоянным объемом (рис. 3.10.1).

В частности, это отношение входит в формулу для адиабатического процесса (см. §3.9).

Между двумя изотермами с температурами T 1 и T 2 на диаграмме (p, V) возможны различные пути перехода. Поскольку для всех таких переходов изменение температуры ΔT = T 2 – T 1 одинаково, следовательно, одинаково изменение ΔUвнутренней энергии. Однако, совершенные при этом работы A и полученные в результате теплообмена количества теплоты Q окажутся различными для разных путей перехода. Отсюда следует, что у газа имеется бесчисленное количество теплоемкостей. C p и C V – это лишь частные (и очень важные для теории газов) значения теплоемкостей.

Билет 8.

1 Конечно, положение одной, даже «особой», точки далеко не полностью описывает движение всей рассматриваемой системы тел, но все-таки лучше знать положение хотя бы одной точки, чем не знать ничего. Тем не менее рассмотрим применение законов Ньютона к описанию вращения твердого тела вокруг фиксированной оси 1 .  Начнем с простейшего случая: пусть материальная точка массы m прикреплена с помощью невесомого жесткого стержня длиной r к неподвижной оси ОО / (рис. 106).

Материальная точка может двигаться вокруг оси, оставаясь от нее на постоянном расстоянии, следовательно, ее траектория будет являться окружностью с центром на оси вращения. Безусловно, движение точки подчиняется уравнению второго закона Ньютона

Однако непосредственное применение этого уравнения не оправдано: во-первых, точка обладает одной степенью свободы, поэтому в качестве единственной координаты удобно использовать угол поворота, а не две декартовые координаты; во-вторых, на рассматриваемую систему действуют силы реакции в оси вращения, а непосредственно на материальную точку − сила натяжения стержня. Нахождение этих сил представляет собой отдельную проблему, решение которой излишне для описания вращения. Поэтому имеет смысл получить на основании законов Ньютона специальное уравнение, непосредственно описывающее вращательное движение.  Пусть в некоторый момент времени на материальную точку действует некоторая сила F , лежащая в плоскости, перпендикулярной оси вращения (рис. 107).

При кинематическом описании криволинейного движения вектор полного ускорения а удобно разложить на две составляющие − нормальную а n , направленную к оси вращения, и тангенциальную а τ , направленную параллельно вектору скорости. Значение нормального ускорения для определения закона движения нам не нужно. Конечно, это ускорение также обусловлено действующими силами, одна из которых − неизвестная сила натяжения стержня. Запишем уравнение второго закона в проекции на тангенциальное направление:

Заметим, что сила реакции стержня не входит в это уравнение, так как она направлена вдоль стержня и перпендикулярна выбранной проекции. Изменение угла поворота φ непосредственно определяется угловой скоростью

ω = Δφ/Δt ,

изменение которой, в свою очередь, описывается угловым ускорением

ε = Δω/Δt .

Угловое ускорение связано с тангенциальной составляющей ускорения соотношением

а τ = rε .

Если подставим это выражение в уравнение (1), то получим уравнение, пригодное для определения углового ускорения. Удобно ввести новую физическую величину, определяющую взаимодействие тел при их повороте. Для этого умножим обе части уравнения (1) на r :

mr 2 ε = F τ r . (2)

Рассмотрим выражение в его правой части F τ r , имеющее смысл произведения тангенциальной составляющей силы на расстояние от оси вращения до точки приложения силы. Это же произведение можно представить в несколько иной форме (рис. 108):

M = F τ r = Frcosα = Fd ,

здесь d − расстояние от оси вращения до линии действия силы, которое также называют плечом силы.  Эта физическая величина − произведение модуля силы на расстояние от линии действия силы до оси вращения (плечо силы) М = Fd − называется моментом силы. Действие силы может приводить к вращению как по часовой стрелке, так и против часовой стрелки. В соответствии с выбранным положительным направлением вращения следует определять и знак момента силы. Заметьте, что момент силы определяется той составляющей силы, которая перпендикулярна радиус-вектору точки приложения. Составляющая вектора силы, направленная вдоль отрезка, соединяющего точку приложения и ось вращения, не приводит к раскручиванию тела. Эта составляющая при закрепленной оси компенсируется силой реакции в оси, поэтому не влияет на вращение тела.  Запишем еще одно полезное выражения для момента силы. Пусть сила F приложена к точке А , декартовые координаты которой равны х , у (рис. 109).

Разложим силу F на две составляющие F х , F у , параллельные соответствующим осям координат. Момент силы F относительно оси, проходящей через начало координат, очевидно равен сумме моментов составляющих F х , F у , то есть

М = хF у − уF х .

Аналогично, тому, как нами было введено понятие вектора угловой скоро¬сти, можно определить также и понятие вектора момента силы. Модуль этого вектора соответствует данному выше определению, направлен же он перпендикулярно плоскости, содержащей вектор силы и отрезок, соединяющий точку приложения силы с осью вращения (рис. 110).

Вектор момента силы также может быть определен как векторное произведение радиус-вектора точки приложения силы на вектор силы

Заметим, что при смещении точки приложения силы вдоль линии ее действия момент силы не изменяется.  Обозначим произведение массы материальной точки на квадрат расстояния до оси вращения

mr 2 = I

(эта величина называется моментом инерции материальной точки относительно оси). С использованием этих обозначений уравнение (2) приобретает вид, формально совпадающий с уравнением второго закона Ньютона для поступательного движения:

Iε = M . (3)

Это уравнение называется основным уравнением динамики вращательного движения. Итак, момент силы во вращательном движении играет такую же роль, как и сила в поступательном движении, − именно он определяет изменение угловой скорости. Оказывается (и это подтверждает наш повседневный опыт), влияние силы на скорость вращения определяет не только величина силы, но и точка его приложения. Момент инерции определяет инерционные свойства тела по отношению к вращению (говоря простым языком − показывает, легко ли раскрутить тело): чем дальше от оси вращения находится материальная точка, тем труднее привести ее во вращение.  Уравнение (3) допускает обобщение на случай вращения произвольного тела. При вращении тела вокруг фиксированной оси угловые ускорения всех точек тела одинаковы. Поэтому аналогично тому, как мы проделали при выводе уравнения Ньютона для поступательного движения тела, можно записать уравнения (3) для всех точек вращающегося тела и затем их просуммировать. В результате мы получим уравнение, внешне совпадающее с (3), в котором I − момент инерции всего тела, равный сумме моментов составляющих его материальных точек, M − сумма моментов внешних сил, действующих на тело.  Покажем, каким образом вычисляется момент инерции тела. Важно подчеркнуть, что момент инерции тела зависит не только от массы, формы и размеров тела, но и от положения и ориентации оси вращения. Формально процедура расчета сводится к разбиению тела на малые части, которые можно считать материальными точками (рис. 111),

и суммированию моментов инерции этих материальных точек, которые равны произведению массы на квадрат расстояния до оси вращения:

Для тел простой формы такие суммы давно подсчитаны, поэтому часто достаточно вспомнить (или найти в справочнике) соответствующую формулу для нужного момента инерции. В качестве примера: момент инерции кругового однородного цилиндра, массы m и радиуса R , для оси вращения, совпадающей с осью цилиндра равен:

I = (1/2)mR 2 (рис. 112).

В данном случае мы ограничиваемся рассмотрением вращения вокруг фиксированной оси, потому что описание произвольного вращательного движения тела представляет собой сложную математическую проблему, далеко выходящую за рамки курса математики средней школы. Знания же других физических законов, кроме рассматриваемых нами, это описание не требует.

2 Вну́тренняя эне́ргия тела (обозначается как E или U ) - полная энергия этого тела за вычетом кинетической энергии тела как целого и потенциальной энергии тела во внешнем поле сил. Следовательно, внутренняя энергия складывается из кинетической энергии хаотического движения молекул, потенциальной энергии взаимодействия между ними и внутримолекулярной энергии.

Внутренняя энергия тела - энергия движения и взаимодействия частиц, из которых состоит тело.

Внутренняя энергия тела - это суммарная кинетическая энергия движения молекул тела и потенциальная энергия их взаимодействия.

Внутренняя энергия является однозначной функцией состояния системы. Это означает, что всякий раз, когда система оказывается в данном состоянии, её внутренняя энергия принимает присущее этому состоянию значение, независимо от предыстории системы. Следовательно, изменение внутренней энергии при переходе из одного состояния в другое будет всегда равно разности значений в этих состояниях, независимо от пути, по которому совершался переход.

Внутреннюю энергию тела нельзя измерить напрямую. Можно определить только изменение внутренней энергии:

Для квазистатических процессов выполняется следующее соотношение:

1. Общие сведения Количество теплоты, которое необходимо для нагревания на 1° единицы количества газа, называется теплоемкостью и обозначается буквой с. В технических расчетах теплоемкость измеряют в килоджоулях. При использовании старой системы единиц теплоемкость выражают в килокалориях (ГОСТ 8550-61) *.В зависимости от того, в каких единицах измеряют количество газа различают: мольную теплоемкость \хс в кдж/(кмолъ х X град); массовую теплоемкость с в кдж/(кг-град); объемную теплоемкость с в кдж/(м 3 град). При определении объемной теплоемкости необходимо указывать к каким значениям температуры и давления она относится. Принято определять объемную теплоемкость при нормальных физических условиях.Теплоемкость газов, подчиняющихся законам идеального газа, зависит только от температуры.Различают среднюю и истинную теплоемкость газов. Истинная теплоемкость представляет собой отношение бесконечно малого количества подведенной теплоты Дд при увеличении температуры на бесконечно малую величину At: Средняя теплоемкость определяет среднее количество подведенной теплоты при нагревании единицы количества газа на 1° в интервале температур от t x до t%: где q - количество теплоты, подведенной к единице массы газа при его нагревании от температуры t t до температуры t%. В зависимости от характера протекания процесса, при котором происходит подвод или отвод теплоты, величина теплоемкости газа будет различной.Если газ подогревается в сосуде постоянного объема (V =» = const), то теплота расходуется только на повышение его температуры.Если газ находится в цилиндре с подвижным поршнем, то при подводе теплоты давление газа остается постоянным (р = = const). При этом, подогреваясь, газ расширяется и производит работу против внешних сил при одновременном увеличении его температуры. Для того чтобы разность между конечной и начальной температурами во время нагрева газа в процессе р = const была бы такой же, как и в случае нагрева при V = = const, количество затрачиваемой теплоты должно быть больше на величину, равную совершенной газом работы в процессе р = = const. Из этого следует, что теплоемкость газа при постоянном давлении с р будет больше теплоемкости при постоянном объеме.Второй член в уравнениях характеризует количество теплоты, затрадиваемой на работу газа в процессе р = = const при изменении температуры на 1°.При проведении приближенных расчетов можно принимать, что теплоемкость рабодего тела постоянна и не зависит от температуры. В этом слудае знадения мольных теплоемкостей при постоянном объеме можно принять для одно-, двух- и многоатомных газов соответственно равными 12,6; 20,9 и 29,3 кдж/(кмоль-град) или 3; 5 и 7 ккал/(кмоль-град).

Его движения , т.е. величина .

Импульс — величина векторная, совпадающая по направлению с вектором скорости .

Единица измерения импульса в системе СИ: кг м/с .

Импульс системы тел равен векторной сумме импульсов всех тел, входящих в систему:

Закон сохранения импульса

Если на систему взаимодействующих тел действуют дополнительно внешние силы, например, то в этом случае справедливо соотношение, которое иногда называют законом изменения импульса:

Для замкнутой системы (при отсутствии внешних сил) справедлив закон сохранения импульса:

Действием закона сохранения импульса можно объяснить явление отдачи при стрельбе из винтовки или при артиллерийской стрельбе. Также действие закона сохранения импульса лежит в основе принципа работы всех реактивных двигателей.

При решении физических задач законом сохранения импульса пользуются, когда знание всех деталей движения не требуется, а важен результат взаимодействия тел. Такими задачами, к примеру, являются задачи о соударении или столкновении тел. Законом сохранения импульса пользуются при рассмотрении движения тел переменной массы таких, как ракеты-носители. Большую часть массы такой ракеты составляет топливо. На активном участке полета это топливо выгорает, и масса ракеты на этом участке траектории быстро уменьшается. Также закон сохранения импульса необходим в случаях, когда неприменимо понятие . Трудно себе представить ситуацию, когда неподвижное тело приобретает некоторую скорость мгновенно. В обычной практике тела всегда разгоняются и набирают скорость постепенно. Однако при движении электронов и других субатомных частиц изменение их состояния происходит скачком без пребывания в промежуточных состояниях. В таких случаях классическое понятие «ускорения» применять нельзя.

Примеры решения задач

ПРИМЕР 1

Задание Снаряд массой 100 кг, летящий горизонтально вдоль железнодорожного пути со скоростью 500 м/с, попадает в вагон с песком массой 10 т и застревает в нем. Какую скорость получит вагон, если он двигался со скоростью 36 км/ч в направлении, противоположном движению снаряда?
Решение Система вагон+снаряд является замкнутой, поэтому в данном случае можно применить закон сохранения импульса.

Выполним рисунок, указав состояние тел до и после взаимодействия.

При взаимодействии снаряда и вагона имеет место неупругий удар. Закон сохранения импульса в этом случае запишется в виде:

Выбирая направление оси совпадающим с направлением движения вагона, запишем проекцию этого уравнения на координатную ось:

откуда скорость вагона после попадания в него снаряда:

Переводим единицы в систему СИ: т кг.

Вычислим:

Ответ После попадания снаряда вагон будет двигаться со скоростью 5 м/с.

ПРИМЕР 2

Задание Снаряд массой m=10 кг обладал скоростью v=200 м/с в верхней точке . В этой точке он разорвался на две части. Меньшая часть массой m 1 =3 кг получила скорость v 1 =400 м/с в прежнем направлении под углом к горизонту. С какой скоростью и в каком направлении полетит большая часть снаряда?
Решение Траектория движения снаряда – парабола. Скорость тела всегда направлена по касательной к траектории. В верхней точке траектории скорость снаряда параллельна оси .

Запишем закон сохранения импульса:

Перейдем от векторов к скалярным величинам. Для этого возведем обе части векторного равенства в квадрат и воспользуемся формулами для :

Учитывая, что , а также что , находим скорость второго осколка:

Подставив в полученную формулу численные значения физических величин, вычислим:

Направление полета большей части снаряда определим, воспользовавшись :

Подставив в формулу численные значения, получим:

Ответ Большая часть снаряда полетит со скоростью 249 м/с вниз под углом к горизонтальному направлению.

ПРИМЕР 3

Задание Масса поезда 3000 т. Коэффициент трения 0,02. Какова должна быть паровоза, чтобы поезд набрал скорость 60 км/ч через 2 мин после начала движения.
Решение Так как на поезд действует (внешняя сила), систему нельзя считать замкнутой, и закон сохранения импульса в данном случае не выполняется.

Воспользуемся законом изменения импульса:

Так как сила трения всегда направлена в сторону, противоположную движению тела, в проекцию уравнения на ось координат (направление оси совпадает с направлением движения поезда) импульс силы трения войдет со знаком «минус»:

Гольдфарб Н., Новиков В. Импульс тела и системы тел // Квант. - 1977. - № 12. - С. 52-58.

По специальной договоренности с редколлегией и редакцией журнала «Квант»

Понятие импульса (количества движения) было впервые введено в механику Ньютоном. Напомним, что под импульсом материальной точки (тела) понимается векторная величина , равная произведению массы тела на его скорость:

Наряду с понятием импульса тела используется понятие импульса силы. Импульс силы специального обозначения не имеет. В частном случае, когда действующая на тело сила постоянна, импульс силы по определению равен произведению силы на время ее действия: . В общем случае, когда сила изменяется со временем , импульс силы определяется как .

Используя понятие импульса тела и импульса силы, первый и второй законы Ньютона можно сформулировать следующим образом.

Первый закон Ньютона: существуют системы отсчета, в которых сохраняется неизменным импульс тела, если на него не действуют другие тела или действия других тел компенсируются.

Второй закон Ньютона: в инерциальных системах отсчета изменение импульса тела равно импульсу приложенной к телу силы, то есть

В отличие от привычной галилеевской формы второго закона: , «импульсная» форма этого закона позволяет применять его к задачам, связанным с движением тел переменной массы (например, ракет) и с движениями в области околосветовых скоростей (когда масса тела зависит от его скорости).

Подчеркнем, что импульс, приобретаемый телом, зависит не только от действующей на тело силы, но и от продолжительности ее действия. Это можно проиллюстрировать, например, на опыте с выдергиванием листа бумаги из-под бутылки - мы оставим ее стоящей практически неподвижно, если сделаем это рывком (рис. 1). Сила трения скольжения, действующая на бутылку в течение очень малого промежутка времени, то есть небольшой импульс силы, вызывает соответственно малое изменение импульса бутылки.

Второй закон Ньютона (в «импульсной» форме) дает возможность по изменению импульса тела определить импульс силы, действующей на данное тело, и среднее значение силы за время ее действия. В качестве примера рассмотрим такую задачу.

Задача 1 . Мячик массой 50 г ударяет в гладкую вертикальную стенку под углом 30° к ней, имея к моменту удара скорость 20 м/с, и упруго отражается. Определить среднюю силу, действующую на мячик во время удара, если соударение мячика со стенкой длится 0,02 с.

На мячик во время удара действуют две силы - сила реакции стенки (она перпендикулярна стенке, так как трения нет) и сила тяжести. Пренебрежем импульсом силы тяжести, полагая, что по абсолютной величине он много меньше импульса силы (это предположение мы подтвердим позже). Тогда при столкновении мячика со стенкой проекция его импульса на вертикальную ось Y не изменится, а на горизонтальную ось X - останется такой же по абсолютной величине, но изменит знак на противоположный. В результате, как видно на рисунке 2, импульс мячика изменится на величину , причем

Следовательно, со стороны стенки на мячик действует сила такая, что

По третьему закону Ньютона мячик действует на стенку с такой же по абсолютной величине силой.

Сравним теперь абсолютные значения импульсов сил и :

1 Н·с, = 0,01 Н·с.

Мы видим, что , и импульсом силы тяжести действительно можно пренебречь.

Импульс замечателен тем, что под действием одной и той же силы он изменяется одинаково у всех тел, независимо от их массы, если только время действия силы одинаково. Разберем следующую задачу.

Задача 2 . Две частицы массами m и 2m движутся во взаимно перпендикулярных направлениях со скоростями соответственно 2 и (рис. 3). На частицы начинают действовать одинаковые силы. Определить величину и направление скорости частицы массой 2m в момент времени, когда скорость частицы массой m стала такой, как показано пунктиром: а) на рисунке 3, а; б) на рисунке 3, б.

Изменение импульсов обеих частиц одно и то же: на них одинаковое время действовали одинаковые силы. В случае а) модуль изменения импульса первой частицы равен

Вектор направлен горизонтально (рис. 4, а). Так же меняется и импульс второй частицы. Поэтому модуль импульса второй частицы будет равен

модуль скорости равен , а угол .

Аналогично найдем, что в случае б) модуль изменения импульса первой частицы равен (рис. 4, б). Модуль импульса второй частицы станет равным (это нетрудно найти, воспользовавшись теоремой косинусов), модуль скорости этой частицы равен и угол (согласно теореме синусов).

Когда мы переходим к системе взаимодействующих тел (частиц), то оказывается, что полный импульс системы - геометрическая сумма импульсов взаимодействующих тел - обладает замечательным свойством сохраняться во времени. Этот закон сохранения импульса является прямым следствием второго и третьего законов Ньютона. В учебнике «Физика 8» этот закон выведен для случая двух взаимодействующих тел, образующих замкнутую систему (эти тела не взаимодействуют ни с какими другими телами). Легко обобщить этот вывод на замкнутую систему, состоящую из произвольного числа n тел. Покажем это.

Согласно второму закону Ньютона изменение импульса i -гo тела системы за малый промежуток времени Δt равно сумме импульсов сил взаимодействия его со всеми другими телами системы:

Изменение полного импульса системы есть сумма изменений импульсов, составляющих систему тел: по второму закону Ньютона, равно сумме импульсов всех внутренних сил системы:

В соответствии с третьим законом Ньютона силы взаимодействия между телами системы попарно одинаковы по абсолютной величине и противоположны по направлению: . Поэтому сумма всех внутренних сил равна нулю, значит,

Но если изменение некой величины за произвольный малый промежуток времени Δt равно нулю, то сама эта величина неизменна во времени:

Таким образом, изменение импульса любого из тел, составляющих замкнутую систему, компенсируется противоположным изменением в других частях системы. Иными словами, импульсы тел замкнутой системы могут как угодно изменяться, но сумма их остается постоянной во времени. Если же система не замкнута, то есть на тела системы действуют не только внутренние, но и внешние силы, то, рассуждая подобным образом, придем к выводу, что приращение полного импульса системы за промежуток времени Δt будет равно сумме импульсов внешних сил за тот же промежуток времени:

Импульс системы могут изменить только внешние силы.

Если , то незамкнутая система ведет себя подобно замкнутой, и к ней применим закон сохранения импульса.

Рассмотрим теперь несколько конкретных задач.

Задача 3 . Орудие массы m соскальзывает по гладкой наклонной плоскости, составляющей угол α с горизонтом. В момент, когда скорость орудия равна , производят выстрел, в результате которого орудие останавливается, а вылетевший в горизонтальном направлении снаряд «уносит» импульс (рис. 5). Продолжительность выстрела равна τ. Каково среднее за время τ значение силы реакции со стороны наклонной плоскости?

Начальный импульс системы тел орудие - снаряд равен , конечный импульс равен . Рассматриваемая система не замкнута: за время τ она получает приращение импульса . Изменение импульса системы обусловлено действием двух внешних сил: силы реакции (перпендикулярной наклонной плоскости) и силы тяжести , поэтому можно записать

Представим это соотношение графически (рис. 6). Из рисунка сразу видно, что искомое значение определяется формулой

Импульс - величина векторная, поэтому закон сохранения импульса можно применять к каждой из его проекций на оси координат. Иначе говоря, если сохраняется , то независимо сохраняются p x , p y и p z (если задача трехмерная).

В случае, когда сумма внешних сил не равна нулю, но проекция этой суммы на некоторое направление - нуль, проекция полного импульса на это же направление сохраняется неизменной. Например, при движении системы в поле силы тяжести сохраняется проекция ее импульса на любое горизонтальное направление.

адача 4 . Горизонтально летящая пуля попадает в деревянный брусок, подвешенный на очень длинном шнуре, и застревает в бруске, сообщив ему скорость u = 0,5 м/с. Определить скорость пули перед ударом. Масса пули m = 15 г, масса бруска М = 6 кг.

Торможение пули в бруске - сложный процесс, но для решения задачи нет никакой необходимости вникать в его детали. Так как в направлении скорости пули до удара и скорости бруска после застревания пули (подвес очень длинный, поэтому скорость бруска горизонтальна) не действуют внешние силы, то можно применить закон сохранения импульса:

Отсюда скорость пули

υ » 200 м/с.

В реальных условиях - в условиях земного притяжения - не существует замкнутых систем, если не включать в них Землю. Однако, если взаимодействие между телами системы много сильнее, чем их взаимодействие с Землей, то можно с большой точностью применять закон сохранения импульса. Так можно поступать, например, при всех кратковременных процессах: взрывах, столкновениях и т. п. (см. например, задачу 1).

Задача 5 . Третья ступень ракеты состоит из ракеты-носителя массой m p = 500 кг и головного конуса массой m к = 10 кг. Между ними помещена сжатая пружина. При испытаниях на Земле пружина сообщила конусу скорость υ = 5,1 м/с по отношению к ракете-носителю. Каковы будут скорости конуса υ к и ракеты-носителя υ p , если их отделение произойдет на орбите при движении со скоростью υ = 8000 м/с?

Согласно закону сохранения импульса

Кроме того,

Из этих двух соотношений получим

Эту задачу можно решать и в системе отсчета, движущейся со скоростью в направлении полета. Заметим в связи с этим, что если импульс сохраняется в одной инерциальной системе отсчета, то он сохраняется и в любой другой инерциальной системе отсчета.

Закон сохранения импульса лежит в основе реактивного движения. Струя газа, вырывающаяся из ракеты, уносит импульс. Этот импульс должен быть скомпенсирован таким же по модулю изменением импульса оставшейся части системы ракета-газ.

Задача 6 . Из ракеты массой М выбрасываются продукты сгорания порциями одной и той же массы m со скоростью относительно ракеты. Пренебрегая действием силы тяжести, определить скорость ракеты, которой она достигнет после вылета n -й порции.

Пусть - скорость ракеты относительно Земли после выброса 1-й порции газа. По закону сохранения импульса

где - скорость первой порции газа относительно Земли в момент разделения системы ракета-газ, когда ракета уже приобрела скорость . Отсюда

Найдем теперь скорость ракеты после вылета второй порции. В системе отсчета, движущейся со скоростью ракета перед вылетом второй порции неподвижна, а после выброса приобретает скорость . Воспользовавшись предыдущей формулой и сделав в ней замену , получим

Тогда будет равно

Закону сохранения импульса можно придать другую форму, упрощающую решение многих задач, если ввести понятие центра масс (центра инерции) системы. Координаты центра масс (точки с ) по определению связаны с массами и координатами частиц, составляющих систему, следующими соотношениями:

Следует заметить, что центр масс системы в однородном поле тяжести совпадает с центром тяжести.

Для выяснения физического смысла центра масс вычислим его скорость , а точнее, проекции этой скорости. По определению

В этой формуле

и

Точно так же найдем, что

Отсюда следует, что

Полный импульс системы равен произведению массы системы на скорость ее центра масс.

Центр масс (центр инерции) системы, таким образом, приобретает смысл точки, скорость которой равна скорости движения системы как целого. Если , то система как целое покоится, хотя при этом тела системы относительно центра инерции могут двигаться произвольным образом.

С помощью формулы закон сохранения импульса может быть сформулирован так: центр масс замкнутой системы либо движется прямолинейно и равномерно, либо остается неподвижным. Если система не замкнута, то можно показать, что

Ускорение центра инерции определяется равнодействующей всех внешних сил, приложенных к системе.

Рассмотрим такие задачи.

3адача 7 . На концах однородной платформы длиной l находятся два человека, массы которых и (рис. 7). Первый прошел до середины платформы. На какое расстояние х надо переместиться по платформе второму человеку, чтобы тележка вернулась на прежнее место? Найти условие, при котором задача имеет решение.

Найдем координаты центра масс системы в начальный и конечный моменты и приравняем их (поскольку центр масс остался на том же месте). Примем за начало координат точку, где в начальный момент находился человек массой m 1 . Тогда

(здесь М - масса платформы). Отсюда

Очевидно, что если m 1 > 2m 2 , то x > l - задача теряет смысл.

Задача 8 . На нити, перекинутой через невесомый блок, подвешены два груза, массы которых m 1 и m 2 (рис. 8). Найти ускорение центра масс этой системы, если m 1 > m 2 .

Импульс - это одна из самых фундаментальных характеристик физической системы. Импульс замкнутой системы сохраняется при любых происходящих в ней процессах.

Знакомство с этой величиной начнем с простейшего случая. Импульсом материальной точки массы движущейся со скоростью называется произведение

Закон изменения импульса. Из этого определения можно с помощью второго закона Ньютона найти закон изменения импульса частицы в результате действия на нее некоторой силы Изменяя скорость частицы, сила изменяет и ее импульс: . В случае постоянной действующей силы поэтому

Скорость изменения импульса материальной точки равна равнодействующей всех действующих на нее сил. При постоянной силе промежуток времени в (2) может быть взят любым. Поэтому для изменения импульса частицы за этот промежуток справедливо

В случае изменяющейся со временем силы весь промежуток времени следует разбить на малые промежутки в течение каждого из которых силу можно считать постоянной. Изменение импульса частицы за отдельный промежуток вычисляется по формуле (3):

Полное изменение импульса за весь рассматриваемый промежуток времени равно векторной сумме изменений импульса за все промежутки

Если воспользоваться понятием производной, то вместо (2), очевидно, закон изменения импульса частицы записывается как

Импульс силы. Изменение импульса за конечный промежуток времени от 0 до выражается интегралом

Величина, стоящая в правой части (3) или (5), называется импульсом силы. Таким образом, изменение импульса Др материальной точки за промежуток времени равно импульсу силы, действовавшей на него в течение этого промежутка времени.

Равенства (2) и (4) представляют собой в сущности другую формулировку второго закона Ньютона. Именно в таком виде этот закон и был сформулирован самим Ньютоном.

Физический смысл понятия импульса тесно связан с имеющимся у каждого из нас интуитивным или почерпнутым из повседневного опыта представлением о том, легко ли остановить движущееся тело. Значение здесь имеют не скорость или масса останавливаемого тела, а то и другое вместе, т. е. именно его импульс.

Импульс системы. Понятие импульса становится особенно содержательным, когда оно применяется к системе взаимодействующих материальных точек. Полным импульсом Р системы частиц называется векторная сумма импульсов отдельных частиц в один и тот же момент времени:

Здесь суммирование выполняется по всем входящим в систему частицам, так что число слагаемых равно числу частиц системы.

Внутренние и внешние силы. К закону сохранения импульса системы взаимодействующих частиц легко прийти непосредственно из второго и третьего законов Ньютона. Силы, действующие на каждую из входящих в систему частиц, разобьем на две группы: внутренние и внешние. Внутренняя сила - это сила, с которой частица действует на Внешняя сила - это сила, с которой действуют на частицу все тела, не входящие в состав рассматриваемой системы.

Закон изменения импульса частицы в соответствии с (2) или (4) имеет вид

Сложим почленно уравнения (7) для всех частиц системы. Тогда в левой части, как следует из (6), получим скорость изменения

полного импульса системы Поскольку внутренние силы взаимодействия между частицами удовлетворяют третьему закону Ньютона:

то при сложении уравнений (7) в правой части, где внутренние силы встречаются только парами их сумма обратится в нуль. В результате получим

Скорость изменения полного импульса равна сумме внешних сил, действующих на все частицы.

Обратим внимание на то, что равенство (9) имеет такой же вид, как и закон изменения импульса одной материальной точки, причем в правую часть входят только внешние силы. В замкнутой системе, где внешние силы отсутствуют, полный импульс Р системы не изменяется независимо от того, какие внутренние силы действуют между частицами.

Полный импульс не меняется и в том случае, когда действующие на систему внешние силы в сумме равны нулю. Может оказаться, что сумма внешних сил равна нулю только вдоль какого-то направления. Хотя физическая система в этом случае и не является замкнутой, составляющая полного импульса вдоль этого направления, как следует из формулы (9), остается неизменной.

Уравнение (9) характеризует систему материальных точек в целом, но относится к определенному моменту времени. Из него легко получить закон изменения импульса системы за конечный промежуток времени Если действующие внешние силы неизменны в течение этого промежутка, то из (9) следует

Если внешние силы изменяются со временем, то в правой части (10) будет стоять сумма интегралов по времени от каждой из внешних сил:

Таким образом, изменение полного импульса системы взаимодействующих частиц за некоторый промежуток времени равно векторной сумме импульсов внешних сил за этот промежуток.

Сравнение с динамическим подходом. Сравним подходы к решению механических задач на основе уравнений динамики и на основе закона сохранения импульса на следующем простом примере.

щенный с сортировочной горки железнодорожный вагон массы движущийся с постоянной скоростью сталкивается с неподвижным вагоном массы и сцепляется с ним. С какой скоростью движутся сцепленные вагоны?

Нам ничего не известно о силах, с которыми взаимодействуют вагоны во время столкновения, кроме того факта, что на основании третьего закона Ньютона они в каждый момент равны по модулю и противоположны по направлению. При динамическом подходе необходимо задаваться какой-то моделью взаимодействия вагонов. Простейшее возможное предположение - что силы взаимодействия постоянны в течение всего времени, пока происходит сцепка. В таком случае с помощью второго закона Ньютона для скоростей каждого из вагонов спустя время после начала сцепки можно написать

Очевидно, что процесс сцепки заканчивается, когда скорости вагонов становятся одинаковыми. Предположив, что это произойдет спустя время х, имеем

Отсюда можно выразить импульс силы

Подставляя это значение в любую из формул (11), например во вторую, находим выражение для конечной скорости вагонов:

Конечно, сделанное предположение о постоянстве силы взаимодействия вагонов в процессе их сцепки весьма искусственно. Использование более реалистичных моделей приводит к более громоздким расчетам. Однако в действительности результат для конечной скорости вагонов не зависит от картины взаимодействия (разумеется, при условии, что в конце процесса вагоны сцепились и движутся с одной и той же скоростью). Проще всего в этом убедиться, используя закон сохранения импульса.

Поскольку никакие внешние силы в горизонтальном направлении на вагоны не действуют, полный импульс системы остается неизменным. До столкновения он равен импульсу первого вагона После сцепки импульс вагонов равен Приравнивая эти значения, сразу находим

что, естественно, совпадает с ответом, полученным на основе динамического подхода. Использование закона сохранения импульса позволило найти ответ на поставленный вопрос с помощью менее громоздких математических выкладок, причем этот ответ обладает большей общностью, так как при его получении не использовалась какая бы то ни было конкретная модель взаимодействия.

Проиллюстрируем применение закона сохранения импульса системы на примере более сложной задачи, где уже выбор модели для динамического решения затруднителен.

Задача

Разрыв снаряда. Снаряд разрывается в верхней точке траектории, находящейся на высоте над поверхностью земли, на два одинаковых осколка. Один из них падает на землю точно под точкой разрыва спустя время Во сколько раз изменится расстояние от этой точки по горизонтали, на которое улетит второй осколок, по сравнению с расстоянием, на котором упал бы неразорвавшийся снаряд?

Решение, Прежде всего напишем выражение для расстояния на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению и на время падения с высоты без начальной скорости, равное на которое улетел бы неразорвавшийся снаряд. Так как скорость снаряда в верхней точке (обозначим ее через направлена горизонтально, то расстояние равно произведению на время падения с высоты без начальной скорости, равное тела, рассматриваемого как система материальных точек:

Разрыв снаряда на осколки происходит почти мгновенно, т. е. разрывающие его внутренние силы действуют в течение очень короткого промежутка времени. Очевидно, что изменением скорости осколков под действием силы тяжести за столь короткий промежуток времени можно пренебречь по сравнению с изменением их скорости под действием этих внутренних сил. Поэтому, хотя рассматриваемая система, строго говоря, не является замкнутой, можно считать, что ее полный импульс при разрыве снаряда остается неизменным.

Из закона сохранения импульса можно сразу выявить некоторые особенности движения осколков. Импульс - векторная величина. До разрыва он лежал в плоскости траектории снаряда. Поскольку, как сказано в условии, скорость одного из осколков вертикальна, т. е. его импульс остался в той же плоскости, то и импульс второго осколка также лежит в этой плоскости. Значит, и траектория второго осколка останется в той же плоскости.

Далее из закона сохранения горизонтальной составляющей полного импульса следует, что горизонтальная составляющая скорости второго осколка равна ибо его масса равна половине массы снаряда, а горизонтальная составляющая импульса первого осколка по условию равна нулю. Поэтому горизонтальная дальность полета второго осколка от

места разрыва равна произведению на время его полета. Как найти это время?

Для этого вспомним, что вертикальные составляющие импульсов (а следовательно, и скоростей) осколков должны быть равны по модулю и направлены в противоположные стороны. Время полета интересующего нас второго осколка зависит, очевидно, от того, вверх или вниз направлена вертикальная составляющая его скорости в момент разрыва снаряда (рис. 108).

Рис. 108. Траектория осколков после разрыва снаряда

Это легко выяснить, сравнив данное в условии время отвесного падения первого осколка с временем свободного падения с высоты А. Если то начальная скорость первого осколка направлена вниз, а вертикальная составляющая скорости второго - вверх, и наоборот (случаи а и на рис. 108).

Закон сохранения импульса для системы мат.точек полный импульс замкнутой системы остаётся постоянным.

(в тетради!!)

19.Закон движения центра масс системы

Теорема о движении центра масс (центра инерции) системы утверждает, что ускорение центра масс механической системы не зависит от внутренних сил, действующих на тела системы, и связывает это ускорение с внешними силами, действующими на систему.

Объектами, о которых идёт речь в теореме, могут, в частности, являться следующие:

    система материальных точек;

    протяжённое тело или система протяжённых тел;

    вообще любая механическая система, состоящая из любых тел.

20.Закон сохранения импульса

утверждает, что векторная сумма импульсов всех тел системы есть величина постоянная, если векторная сумма внешних сил, действующих на систему тел, равна нулю.

21.Закон сохранения момента импульса

момент импульса замкнутой системы тел относительно любой неподвижной точки не изменяется с течением времени.

22.Внутренняя энергия системы материальных точек

Внутренняя энергия системы тел равна сумме внутренних энергий каждого из тел в отдельности и энергии взаимодействия между телами.

23.Неинерциальные системы отсчёта

Переносная скорость связана с характером движения неинерциальной системы отсчёта относительной инерциальной

Сила инерции не связана с взаимодействием объектов, зависит только от характера действия одной системы отсчёта на другую.

24.Переносная скорость, переносное ускорение - это скорость и ускорение того места подвижной системы координат, с которым в данный момент совпадает движущаяся точка.

Переносная скорость - это скорость точки, обусловленная движением подвижной системы отсчёта относительно абсолютной. Другими словами, это скорость точки подвижной системы отсчёта, в данный момент времени совпадающей с материальной точкой. (переносное движение - это движение второй СО относительно первой )

25.Ускорение Кориолиса

Сила Кориолиса - одна из сил инерции, существующая в неинерциальной системе отсчёта из-за вращения и законов инерции, проявляющаяся при движении в направлении под углом к оси вращения.

Кориолиса ускорение - поворотное ускорение, часть полного ускорения точки, появляющаяся при т. н. сложном движении, когда переносное движение, т. е. движение подвижной системы отсчёта, не является поступательным. К. у. появляется вследствие изменения относительной скорости точки υ отн при переносном движении (движении подвижной системы отсчёта) и переносной скорости при относительном движении точки

Численно К.у. равно:

26.Силы инерции

Сила инерции - векторная величина, численно равная произведению массы m материальной точки на её ускорение w и направленная противоположно ускорению

При криволинейном движении С. и. можно разложить на касательную, или тангенциальную, составляющую ,направленную противоположно касат. ускорению ,и на нормальную, или центробежную, составляющую ,направленную вдоль гл. нормали траектории отцентра кривизны; численно , , где v - скорость точки,- радиус кривизны траектории.

А можно и в неинерциальной системе воспользоваться законами Ньютона, если ввести силы инерции. Они фиктивны. Нет тела или поля, под действием которого вы начали двигаться в троллейбусе. Силы инерции вводят специально, чтобы воспользоваться уравнениями Ньютона в неинерциальной системе. Силы инерции обусловлены не взаимодействием тел, а свойствами самих неинерциальных систем отсчета. На силы инерции законы Ньютона не распространяются.

(Сила инерции - фиктивная сила, которую можно ввести в неинерциальной системе отсчёта так, чтобы законы механики в ней совпадали с законами инерциальных систем)

Среди сил инерции выделяют следующие:

    простую силу инерции;

    центробежную силу, объясняющую стремление тел улететь от оси во вращающихся системах отсчёта;

    силу Кориолиса, объясняющую стремление тел сойти с радиуса при радиальном движении во вращающихся системах отсчёта;

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием