Как теория вероятности помогает нам в жизни. Старт в науке

Методическая разработка урока

« Теория вероятности в жизни ».

Предмет: математика

Преподаватель: Ракитская В.Н.

Введение

    План занятия

    Методика проведения занятия

2.1.Организационный момент

2.2.Объяснение нового материала

2.3.Закрепление

2.4. Домашнее задание

2.5. Подведение итогов. Оценки за урок

Заключение

Введение .

Тема : «Теория вероятности в жизни» является одной из важных тем в разделе «Теория вероятности».

С целью реализации поставленных целей, мною был выбран урок -коллоквиум. Формы наглядностей на данном уроке выбраны такие, которые не только дополняют совестную информацию преподавателя, но и сами выступают содержательной информацией.

Методическая разработка по проведению урока - коллоквиума с применением различных методов обучения на каждом этапе урока окажет помощь в совершенствовании процесса обучения.

I. План занятия

По дисциплине «Математика» Специальность 080302 «Коммерция» для студентов 2 курса К группы

Дата проведения:

Тема: «Теория вероятностей в нашей жизни»

Эпиграф урока : «Можно и нужно для задач брать примеры из окружающей

жизни»

Цели:

1. Углубить и систематизировать знания по теме «Теория вероятности в нашей жизни»

2. Продолжить развитие умения действовать самостоятельно, планировать и реализовывать свою деятельность, вести контроль и самоконтроль.

3. Продолжить формировать стремление к глубокому усвоению изучаемого материала.

Время: 1 час

Тип урока: Комбинированный

Ход урока

Методы обучения

I . Организационный момент: 1.Взаимное приветствие

2.Проверка состава студентов

Беседа

II . Постановка целей и задач

III . Обобщение и систематизация учебного материала:

1.Доклады

2.Решение задач:

а)на классическое определение

б) на формулу Бернулли

Рассказ с элементами беседы

Решение задач

IV. Домашнее задание

Сочинение на тему: «Теория

V. Итоги урока

2. Методика проведения занятия .

2.1. Организационно - психологический момент. Мотивация.

2.1.1. Сообщение темы и целей урока.

Педагог приветствует студентов. Говорит, что сегодня они познакомятся c основными понятиями теории вероятностей, и рассмотрят, в каких областях применяется теория вероятностей.

2.1.2.Сообщение: Теория вероятности в жизни (историческая справка).

Как наука теория вероятностей зародилась в 17-ом веке. Возникновение понятия вероятности было связано как с потребностями страхования, получившего значительное распространение в ту эпоху, когда заметно росли торговые связи и морские путешествия, так и в связи с запросами азартных игр. Слово «азарт», под которым обычно понимается сильное увлечение, горячность, является транскрипцией французского слова hazard , буквально означающего «случай», «риск». Азартными называются те игры (карты, домино и т.п.), в которых выигрыш зависит главным образом не от умения игрока, а от случайности. Риск, играющий важную роль в этих играх, и приводит участников в необычайное состояние сильного увлечения и горячности. Азартные игры практиковались в ту пору главным образом среди знати, феодалов и дворян.

2.2. Объяснение нового материала.

Данная тема имеет широкий спектр межпредметных связей: медицина, азартные игры, промышленности, механика и другие науки.

Рассмотрим задачи на с применением классического определения вероятностей

Задачи:

1

В колоде 52 карты, их перемешивают, наугад вынимают 3-й карты.

Какова вероятность, что выпадут 3, 7, туз?

Ответ: Р(А)=0,0029 №2

Карточка «Спортлото» содержит 36 чисел. В тираже участвуют 5 чисел. Какова вероятность того, что верно будет угадано 4 числа?

Ответ: Р(А)=0,00041

2) Вокруг нас происходит очень много событий, исход которых предсказать заранее невозможно. Например, подбрасывая монету, мы не знаем, какой стороной она упадет. Стреляя однотипными снарядами без изменения наводки орудия, в одну точку попасть невозможно. Производя повторные высокоточные (прецизионные) измерения, например, скорости света или очень больших расстояний, обычно получают лишь приблизительно равные, но разные результаты. Не возможно абсолютно точно" предсказать как объемы продаж товаров за фиксированный промежуток времени, так и сумму доходов, получаемых от реализации последних.

Все эти эксперименты производятся в одинаковых условиях, а исходы их различны и непредсказуемы. Такие эксперименты и исходы называются случайными.

Примерами случайных событий являются: соотношение курсов валют; доходность акций; цена реализованной продукции; стоимость выполнения больших проектов; продолжительность жизни человека; броуновское движение частиц, как результат их взаимных соударений и многое другое. Случайность и потребность в консолидации усилий по борьбе со стихией (природы, рынка и т.д.), точнее создание структур для возмещения неожиданного ущерба за счет взносов всех участников, породила теорию и институты страхования. При этом интуитивно ясно, Что случайные явления, происходящие даже с однотипными объектами, могут качественно отличаться друг от друга.

Например, продолжительности жизни в разных странах и в разные эпохи могут принципиально отличаться друг от друга. Первобытные люди жили около 30-40 лет, даже в России за последние годы она подвергается значительным изменениям, то

поднималась до 70 лет, затем начала значительно падать, более того, она различается на 10-15 лет для мужчин и женщин.

Не состоятельно было бы думать, что какие древние полководцы, как Александр Македонский или Дмитрий Донской, готовясь к сражению, уповали только на доблесть и искусство воинов. Несомненно, они на основании наблюдений и опыта военного руководства умели как-то оценить вероятность своего возвращения со щитом или на щите, знали, когда принимать бой, когда уклониться от него. Они не были рабами случая, но вместе с тем они были еще очень далеки от теории вероятностей. Позднее,с опытом, человек все чаще стал взвешивать случайные события, классифицировать их исходы как невозможные, возможные и достоверные.

Теорию вероятностей нередко называют «наукой о случайном». На многих примерах можно убедиться в том, что массовые случайные явления тоже имеют свои закономерности, знание которых можно успешно использовать в практической деятельности человека. Например: суммы, выручаемые от реализации товаров на рынке, во многом диктуются случаем - от платежеспособного спроса населения до поведения конкурентов и умения привлечь клиентов.

Задачи на классическое определение вероятности.

1

Студент знает ответы на 20 теоретических вопросов из 30 и может решить 30 задач из 50предлагаемых на зачете. Какова вероятность того, что студент полностью ответит на билет, который состоит из двух теоретических вопросов и одной задачи?

Ответ: Р(А)=0,23

2

В партии из 50 изделий 10 бракованных. Для выборочного контроля отобрано 5 изделий.

Какова вероятность того, что среди отобранных изделий бракованными окажутся 2?

Ответ: Р(А)= 0,21

На развитие теории вероятностей оказали влияние более серьезные потребности науки и запросы практики, в первую очередь страховое дело, начатое в некоторых странах еще в 14-ом веке. В 16 - 17-ом веках учреждение страховых обществ и страхование судов от пожара распространилось во многих европейских странах. Азартные игры были для ученых только удобной моделью для решения задач и анализа понятий теории вероятности.

В начале 18-ого века Якоб Бернулли, развивая идеи Гюйгенса, разработал в своей книге «Искусство предложений», посмертно опубликованной в 1713г., основы комбинаторики как аппарата для исчисления вероятностей - «теорему Бернулли», являющуюся важным частным случаем так называемого «закона больших чисел», открытого в середине прошлого столетия П.Л. Чебышевым. Благодаря теореме Бернулли теория вероятностей шагнула далеко за пределы вопросов азартных игр и применяется теперь во многих областях практической жизни и человеческой деятельности.

Задачи по формуле Якоба Бернулли.

1

Вероятность того, что образец бетона выдержит нормативную нагрузку, равна 0,9.

Какова вероятность того, что из 7 образцов испытание выдержат ровно 5? Ответ: Р 7 ,5=0,124

2

Вероятность заболевания гриппом во время эпидемии равна 0,4. Какова вероятность того, что из 6 сотрудников фирмы заболеют ровно 4? Ответ: Рб,4= 0,138

3

Определить вероятность того, что в семье, имеющей 5 детей, будет Здевочки и 2 мальчика.

Вероятность рождения мальчика и девочки предполагаются одинаковыми. Ответ: Ps ,3= 0,31

Итак, р азвитие естествознания и техники точных измерений, военного дела и связанной с ним теорией стрельбы, учение о молекулах и кинетической теории газов ставили перед учеными конца 18-ого и начала 19-ого века все новые и новые вые задачи из теории вероятностей. Одной из них была разработка теории ошибок измерений. Этой проблемой занимались многие математики, в том числе Котес, Симпсон, Лагранж, Лаплас.

В настоящее время теория вероятностей продолжает развиваться в тесном контакте с развитием техники и разных ветвей современной теоретической и прикладной математики.

Домашнее задание: Сочинение на тему: «Теория вероятности в нашей жизни» или составить задачи на применение теории вероятности в жизни

Подведение итогов . Оценки за урок.

Заключение

Данная методика проведения урока коллоквиума помогает реализовывать поставленные цели и задачи:

    Прививать положительное отношение к знаниям;

    Развивать контроль и самоконтроль;

    Обобщать и систематизировать знания по разделу «Теория вероятности в жизни»

    Обрабатывать вычислительные навыки при решении задач;

    Активизировать умственную деятельность на протяжении всего урока;

    Прививать интерес к дисциплине;

    Пополнять словарный запас.

В разделе на вопрос Теория вероятности... Где в жизни встречается теория вероятности? заранее спасибо:) заданный автором Просасывать лучший ответ это Весь теорвер взят из жизни. Любые более-менее массовые или часто повторяющиеся явления.
- Вероятность выиграть в лотерею / на рулетке в казино
- Вероятность поломки техники
- Производство - прогноз количества брака.
- Оценка надежности разных систем. Пример - на работе нужен "бесперебойный" (работоспособность 99,9995%) инет. Теорвер помогает.
- Вероятность того, что родители дадут 3.14зды за несделанное домашнее задание
Помним про МАССОВЫЕ И ПОВТОРЯЮЩИЕСЯ
"Если я вот сейчас поставлю в рулетке на 8, то выпадет или нет" , "сейчас пойду на улице, упадет на меня сосулька?" - ХЗ.
А вот ежели раз так 100 ставишь на 8 /то наверняка сольешь деньги, т. к. вероятность выигрыша немного меньше, чем проигрыша, но от перемножения вероятностей шансы твои падают всё сильнее /
или по улице за месяц падает 30 сосулек, а проходит 50 000 человек - вот тогда теорвер замечательно работает.

Ответ от Посоветовать [гуру]
Везде.
Пожалуйста.


Ответ от OchloPhob [гуру]
Только не в российской политике)


Ответ от Враг не пройдет! [гуру]
У профессора физики спрашивают: Какова вероятность того, что прямо сейчас сюда сейчас придет динозавр? Профессор два дня считал, потом говорит: Вероятность 0,0 в минус 300 0000 00000000000000%
У продавщицы спрашивают тоже. Она говорит: 50%
Это как же? - А обыкновенно - Или придет (50%), или не придет (50%)...


Ответ от Европейский [гуру]
В троллейбусе. Зайдёт или не зайдёт контролёр, когда ВЫ без билета едите.


Ответ от Grumm [гуру]
От падения кокосов погибает ~ 150 человек в год. Это в десятки раз больше, чем от укуса акул. Но фильма "Кокос-убийца" пока не снято:))


Ответ от Ёеребряная Тень [гуру]
Кирпич на голову свалится или нет. . машина собьёт или нет..

Введение…………………………………………..……………………………..… 2

Теоретическая часть

Глава I. Теория вероятностей – что это?………………..………………....................................…3

    1. История возникновения и развития теории вероятностей …………………………..…..3

      Основные понятия теории вероятностей…………………………………………….…….3

      Теория вероятностей в жизни……………………………………………………………....6 Практическая часть

Глава II. ЕГЭ как пример использования теории вероятностей жизни……….…....…... 7

2.1. Единый государственный экзамен ………………. 7

Экспериментальная часть………………………………………...……………………….………..9

Анкетирование………………………………………………………………………………..…9

Эксперимент………………………………………..……………………………………………9

Заключение………………………………………..………………………………………… 10

Литература……………………………………………………………………………....………11

Приложение………………………………………………………………..……………… 12

Высшее назначение математики…состоит в том,

чтобы находить скрытый порядок в хаосе, который нас окружает.

Н.Винер

Введение

Мы, не раз слышали или сами говорили “это возможно”, “это не возможно”, это обязательно случится”, “это маловероятно”. Такие выражения обычно употребляют, когда говорят о возможности наступления события, которое в одних и тех же условиях может произойти, а может и не произойти.

Цель моего исследования : выявить вероятность успешной сдачи экзамена обучающимися 11 класса путем угадывания правильного ответа, применяя теорию вероятностей.

Для реализации целей я поставила перед собой задачи :

1) собрать, изучить и систематизировать материал о теории вероятностей, в оспользовавшись различными источниками информации;

2) р ассмотреть использование теории вероятности в различных сферах жизнедеятельности;

3) п ровести исследование по определению вероятности получения положительной оценки при сдаче ЕГЭ путем угадывания правильного ответа.

Я выдвинула гипотезу: с помощью теории вероятностей можно с большой степенью уверенности предсказать события, происходящие в нашей жизни.

Объект исследования – теория вероятностей.

Предмет исследования: практическое применение теории вероятностей .

Методы исследования : 1) анализ,2) синтез, 3) сбор информации, 4) работа с печатными материалами, 5) анкетирование, 6) эксперимент.

Я считаю, что вопрос, исследованный в моей работе, является актуальным по ряду причин:

    Случай, случайность – с ними мы встречаемся повседневно. Кажется, как можно «предвидеть» наступление случайного события? Ведь оно может произойти, а может и не сбыться! Но математика нашла способы оценивать вероятность наступления случайных событий. Они позволяют человеку уверенно чувствовать себя при встрече со случайными событиями.

    Серьёзный шаг в жизни каждого выпускника – Единый государственный экзамен. Мне тоже предстоит на следующий год сдавать экзамены. Успешная его сдача - это дело случая или нет?

Глава 1.Теория вероятностей.

    1. История

Корни теории вероятностей уходят далеко вглубь веков. Известно, что в древнейших государствах Китае, Индии, Египте, Греции уже использовались некоторые элементы вероятностных рассуждений для переписи населения, и даже определения численности войска неприятеля.

Первые работы по теории вероятности, принадлежащие французским учёным Б. Паскалю и П. Ферма, голландскому учёному X. Гюйгенсу, появились в связи с подсчётом различных вероятностей в азартных играх. Крупный успех теории вероятностей связан с именем швейцарского математика Я. Бернулли (1654-1705гг.). Он открыл знаменитый закон больших чисел: дал возможность установить связь между вероятностью какого-либо случайного события и частотой его появления, наблюдаемой непосредственно из опыта. С ледующий период истории теории вероятностей (XVIII в. и начало Х I Х в.) связан с именами А. Муавра, П. Лапласа, К. Гаусса и С. Пуассона. В этот период теория вероятностей находит ряд применений в естествознании и технике .

Третий период истории теории вероятностей , ( вторая половина XIX в.) связан в основном с именами русских математиков П. Л. Чебышева, А. М. Ляпунова. Наиболее распространённая в настоящее время логическая схема построения основ теории вероятностей разработана в 1933 году математиком А. Н. Колмогоровым.

    1. Определение и основные формулы

Итак, насколько эта теория полезна в прогнозировании и насколько она точна? Каковы ее основные тезисы? Какие полезные наблюдения можно вынести из текущей теории вероятностей?

Основным понятием теории вероятностей является вероятность . Это слово достаточно часто применяется в повседневной жизни. Думаю, каждому знакомы фразы: «Завтра, вероятно, выпадет снег», или «вероятнее всего в выходные я поеду на природу». В словаре С.И.Ожегова дается толкование слова вероятность как «возможности осуществления чего-нибудь». И здесь же дается определение понятию теории вероятностей как «разделу математики, изучающей закономерности, основанные на взаимодействии большого числа случайных явлений».

В учебнике «Алгебра и начала анализа» для 10-11 классов под редакцией Ш.А.Алимова дается следующее определение: т еория вероятностей - раздел математики, который «занимается исследованием закономерностей в массовых явлениях».

При изучении явлений, мы проводим эксперименты, в ходе которых происходят различные события, среди которых различают: достоверные, случайные, невозможные, равновероятные.

Событие U называют достоверным U обязательно произойдет. Например, достоверным будет появление одного из шести чисел 1,2,3,4,5,6 при одном бросании игральной кости. Событие называют случайным по отношению к некоторому испытанию, если в ходе этого испытания оно может произойти, а может и не произойти. Например, при однократном бросании игральной кости может выпасть число 1 или не выпасть, т.е. событие является случайным, потому что оно может произойти, а может и не произойти . Событие V называют невозможным по отношению к некоторому испытанию, если в ходе этого испытания событие V не произойдет . Например, невозможным является выпадение числа 7 при бросании игрального кубика. Равновероятные события – это события, которые при данных условиях имеют одинаковые шансы для наступления.

А как подсчитать вероятность случайного события? Ведь если случайное, значит, не подчиняется закономерностям, алгоритмам. Оказывается, и в мире случайного действуют определенные законы, позволяющие вычислять вероятности.

Принято вероятность события А обозначать буквой Р(А), тогда формула для вычисления вероятности записывается так:

Р(А)=, где m n (1)

Вероятностью Р(А) события А в испытании с равновозможными элементарными исходами называется отношение числа исходов m , благоприятствующих событию А, к числу исходов n всех исходов испытания. Из формулы (1) следует, что

0≤ Р(А)≤ 1.

Данное определение принято называть классическим определением вероятности . Оно применяется, когда теоретически удается выявить все равновозможные исходы испытания и определить благоприятствующие исследуемому испытанию исходы. Однако на практике часто встречаются испытания, число возможных исходов которых очень велико. Например, без многократного подбрасывания кнопки трудно определить, равновозможны ли ее падения «на плоскость» или на «острие». Поэтому используется и статистическое определение вероятности. Статистической вероятностью называют число, около которого колеблется относительная частота события (W ( A ) – отношение числа испытаний М, в которых это событие произошло, к числу всех проведенных испытаний N ) при большом числе испытаний.

Также я познакомилась с формулой Бернулли - это формула в , позволяющая находить вероятность появления события A при независимых испытаниях. Названа в честь выдающегося швейцарского математика , выведшего формулу:

P(m)=

Чтобы найти каковы шансы наступления события А в данной ситуации, необходимо :

    найти общее количество исходов этой ситуации;

    найти количество возможных исходов, при которых произойдёт событие А;

    найти, какую часть составляют возможные исходы от общего количества исходов.

    1. Теория вероятностей в жизни.

В развитии теории вероятностей весьма большую роль играли задачи, связанные с азартными играми, в первую очередь с игрой в кости.

Игры в кости

Инструментом для игры являются кубики (кости) в количестве от одного до пяти в зависимости от вида игры. Суть игры состоит в выбрасывании кубиков и дальнейшем подсчёте очков, количество которых и определяет победителя. Основной принцип игры в кости - каждый игрок по очереди бросает некоторое количество игральных костей (от одной до пяти), после чего результат броска (сумма выпавших очков; в некоторых вариантах используются очки каждой кости по отдельности) используется для определения победителя или проигравшего.

Лотерея

Лотерея - организованная игра, при которой распределение выгод и убытков зависит от случайного извлечения того или иного билета или номера (жребия, лота).

Карточные игры

Карточная игра - игра с применением игральных карт, характеризуется случайным начальным состоянием, для определения которого используется набор (колода).

Важным принципом практически всех карточных игр является случайность порядка карт в колоде.

Игровые автоматы

Известно, что в игровых автоматах скорость вращения барабанов зависит от работы микропроцессора, повлиять на который нельзя. Но можно вычислить вероятность выигрыша на игровом автомате, в зависимости от количества символов на нем, числа барабанов и других условий. Однако выиграть это знание вряд ли поможет. В наше время наука о случайном очень важна. Она применяется в селекции при разведении ценных сортов растений, при приемке промышленной продукции, при расчете графика разгрузки вагонов и т.д.

Глава II. ЕГЭ как пример использования теории вероятностей жизни

2.1. Единый государственный экзамен

Я обучаюсь в 10 классе, и на следующий год мне предстоит сдавать экзамены.

Среди нерадивых учеников возник вопрос: «А нельзя ли выбрать наугад ответ и при этом получить положительную оценку за экзамен?» Я провела опрос среди обучающихся: можно ли практически угадать 7 заданий, т.е. сдать ЕГЭ по математике без подготовки. Результаты такие: 50% учащихся считают, что смогут сдать экзамен указанным выше способом.

Я решила проверить, правы ли они? Ответить на этот вопрос можно путем использования элементов теории вероятностей. Я хочу проверить это на примере предметов, обязательных для сдачи экзаменов: математика и русский язык и на примере наиболее предпочитаемых предметов в 11 классе. По данным 2016 года 75% выпускников МБОУ «Кружилинская СОШ» выбрали обществознание.

А) Русский язык. По данному предмету тест включает 24 заданий из которых 19 заданий с выбором ответа из предложенных. Для того, чтобы пройти порог на экзамене в 2016 году достаточно правильно выполнить 16 заданий. Каждое задание имеет несколько вариантов ответов, один из которых правильный. Определить вероятность получения положительной оценки на экзамене можно по формуле Бернулли:

Схема Бернулли описывает эксперименты со случайным исходом, заключающиеся в следующем. Проводятся n последовательных независимых одинаковых экспериментов, в каждом из которых выделяется одно и тоже событие А, которое может наступить или не наступить в ходе эксперимента. Так как испытания одинаковы, то в любом из них событие А наступает с одинаковой вероятностью. Обозначим ее р = Р(А). Вероятность дополнительного события обозначим q. Тогда q = P(Ā) = 1-p

Пусть событие А – это правильно выбранный ответ из четырех предложенных в одном задании первой части. Вероятность события А определена как отношение числа случаев, благоприятствующих этому событию (т.е. правильно угаданный ответ, а таких случаев 1), к числу всех случаев (таких случаев 4). Тогда p=P(A)= и q=P(Ā)=1-p=.

119759850

0,00163*100%0,163%

Таким образом, вероятность благополучного исхода примерно равна 0,163%!

На примере демонстрационного варианта теста ЕГЭ 2016 года я предложила обучающимся 11 класса выбрать ответы путем угадывания. И вот, что у меня получилось. Средний балл по классу составил 7. Наибольшее количество баллов набрала Софина Яна - 15, наименьшее – Зыков Данил (3 балла). 16 баллов набрал 1 ученик, что составляет 12,5%.(Приложение I)

Обществознание

Первая часть демонстрационного варианта ЕГЭ 2016 года по обществознанию содержит 20 заданий с выбором ответа, из которых только один верный. Определим вероятность получения положительной оценки. Рособрнадзором установлен минимальный первичный балл по обществознанию – 19.

Вероятность получения положительной оценки:

15504

0,000003*100%=0,0003%

Таким образом, вероятность благополучного исхода примерно равна 0,0003%!

Я попросила обучающихся 11 класса угадать ответы по обществознанию. Средний балл составил 4,2 балла. Самый высокий балл -7, самый низкий- 1. Таким образом, ни один обучающийся не смог набрать нужное количество баллов по обществознанию. (Приложение I)

Математика

В 2016 году демонстрационный вариант КИМ ЕГЭ по МАТЕМАТИКЕ содержит 20 заданий. Для успешной сдачи экзамена необходимо было решить не менее 7 заданий. Применим формулу Бернулли.

(8)=* *; ==9; (8)=9**=0,000102996;

0,0001*100%=0,01%

Вывод: вероятность получения положительной оценки составляет 0,01%.

Эксперимент, проведенный, среди моих одноклассников показал, что самое большое количество совпадений - 3, средний балл составил 1,7 балла.

Экспериментальная часть

Анкетирование

Анкетирование проводилось среди обучающихся 9-11 классов. Им было предложено ответить на следующий вопрос:

1.Можно ли сдать экзамены без подготовки, угадывая ответ в заданиях?

Результаты проведенного опроса отражены в диаграммах. (Приложение II)

Эксперимент

1.Среди обучающихся 11 класса на примере демонстрационного варианта контрольно-измерительных материалов ЕГЭ-2016 провела эксперимент с угадыванием ответа по русскому языку и обществознанию. Результаты отражены в таблице 1 (Приложение I) .

2.Своим одноклассникам и одноклассницам предложила угадать ответ в демонстрационном варианте по математике за 2016 год, результаты также представлены в приложении I.

В результате проведенного эксперимента и применяя формулу Бернулли, я доказала, что сдать экзамены путем угадывания ответа невозможно. Только планомерная, вдумчивая и добросовестная учеба в школе позволит выпускнику хорошо подготовиться к участию в ЕГЭ, и успешно решить судьбоносную проблему при переходе на более высокий уровень обучения в вуз.

Заключение

В результате проделанной мной работы, я добилась реализации поставленных перед собой задач:

во-первых , поняла, что теория вероятностей - это огромный раздел науки математики и изучить его в один заход невозможно;

во-вторых , перебрав множество фактов из жизни, и проведя эксперименты, я поняла, что действительно с помощью теории вероятностей можно предсказать события, происходящие в различных сферах жизнедеятельности ;

в-третьих , исследовав вероятность успешной сдачи обучающимися 11 класса ЕГЭ по математике, я при шла к выводу , что т олько планомерная, вдумчивая и добросовестная учеба в школе позволит выпускнику хорошо подготовиться к участию в ЕГЭ. Таким образом, выдвинутая мной гипотеза подтвердилась, с помощью теории вероятностей я доказала, что к экзаменам надо готовиться, а не рассчитывать на авось.

На примере моей работы можно сделать и более общие выводы: подальше держаться от всяких лотерей, казино, карт, азартных игр вообще. Всегда надо подумать, оценить степень риска, выбрать наилучший из возможных вариантов – это, я думаю, пригодится мне в дальнейшей жизни.

Литература

  1. Алимов Ш.А.Алгебра и начала математического анализа.10-11 классы: учеб.для общеобразовательных учреждений: базовый уровень. М.:Просвещение,2010.

  2. Бродский Я.С. «Статистика. Вероятность. Комбинаторика»- М.: Оникс; Мир и Образование, 2008 г.

  3. Бунимович Е.А., Суворова С.Б. Методические указания к теме «Статистические исследования»//Математика в школе.-2003.-№3.

  4. Гусев В.А. Внеклассная работа по математике в 6-8 классах.-М.:Просвещение,1984.

  5. Лютикас В.С. Факультативный курс по математике: Теория вероятностей.-М.:Просвещение 1990.

    Макарычев Ю.Н. Алгебра: элементы статистики и теории вероятностей: учеб. пособие для учащихся 7-9 кл. общеобразоват. учреждений-М.:Просвещение,2007.

    Ожегов С.И. Словарь русского языка:.М.:Рус.яз.,1989.

    Федосеев В.Н.Элементы теории вероятностей для VII-IX классов средней школы.//Математика в школе.-2002.-№4,5.

    Что такое. Кто такой: В 3 т.Т.1 – 4-е изд. перераб.и доп.-М.:Педагогика-Пресс,1997.

Ресурсы:

    Текст работы размещён без изображений и формул.
    Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

    Введение

    Теория вероятности - математическая наука, которая изучает математические модели случайных явлений, вычисляет вероятности наступления определенных событий.

    Основы теории вероятностей изучаются в программе по математике каждой школы. Кроме того, задачи по данной дисциплине являются обязательной частью ОГЭ 9 и 11 классов.

    Одной из важнейших сфер приложения теории вероятностей является экономика. В настоящее время невозможно себе представить исследование и прогнозирование экономических явлений без использования экономического моделирования, регрессионного анализа, трендовых и сглаживающих моделей и других методов, опирающихся на закономерности, которые изучаются в курсах теории вероятностей и математической статистики .

    Также теория вероятностей имеет широкое применение таком направлении, как прогнозирование погоды в конкретный период. Поэтому возникает желание практически проверить, поможет ли данная наука для целей, решение которых необходимо в повседневной жизни.

    Цель данной работы заключается в изучении особенностей применения теории вероятностей в жизни и анализе данных, полученных в ходе проведения практического эксперимента;

    Задачи исследования:

    Изучить и проанализировать необходимую литературу по теме исследования;

    Порешать ряд задач на классическое определение вероятности.

    Экспериментально проверить применение вероятности в повседневной жизни.

    Данная работа состоит из двух частей: «Глава 1. Теоретическая часть», «Глава 2. Экспериментальная часть», каждая из которых разбита на отдельные параграфы.

    Объект исследования: применение теории вероятностей в жизни;

    Предмет исследования: основы теории вероятностей;

    Вероятностные идеи стимулируют в наши дни развитие всего комплекса знаний, начиная от наук о не живой природе и кончая науками об обществе. Прогресс современного естествознания неотделим от использования и развития вероятностных идей и методов. В наше время трудно назвать какую-либо область исследований, где бы не применялись вероятностные методы.

    Гипотеза исследования: углубленное изучение данной темы позволит нам быть компетентными в вопросах экзаменов 9 и 11 классов;

    Практическая значимость: Рассмотренный в ходе исследования материал обогащает жизненный опыт методами решения стандартных и нестандартных задач по теории вероятностей.

    Глава 1 Теоретическая часть 1.1 История появления теории вероятностей

    Французский дворянин, некий господин де Мере, был азартным игроком в кости и страстно хотел разбогатеть. Он затратил много времени, чтобы открыть тайну игры в кости. Он выдумывал различные варианты игры, предполагая, что таким образом приобретет крупное состояние. Так, например, он предлагал бросать одну кость по очереди 4 раза и убеждал партнера, что по крайней мере один раз выпадет при этом шестерка. Если за 4 броска шестерка не выходила, то выигрывал противник.

    В те времена еще не существовала отрасль математики, которую сегодня мы называем теорией вероятностей, а поэтому, чтобы убедиться, верны ли его предположения, господин Мере обратился к своему знакомому, известному математику и философу Б. Паскалю с просьбой, чтобы он изучил два знаменитых вопроса, первый из которых он попытался решить сам. Вопросы были такие:

      Сколько раз надо бросать две игральные кости, чтобы случаев выпадения сразу двух шестерок было больше половины от общего числа бросаний?

      Как справедливо разделить поставленные на кон двумя игроками деньги, если они по каким-то причинам прекратили игру преждевременно?

    Паскаль не только сам заинтересовался этим, но и написал письмо известному математику П. Ферма, чем спровоцировал его заняться общими законами игры в кости и вероятностью выигрыша.

    Таким образом, азарт и жажда разбогатеть дали толчок возникновению новой чрезвычайно существенной математической дисциплины: теории вероятностей. В разработке ее основ принимали участие математики такого масштаба, как Паскаль и Ферма, Гюйгенс (1629—1695), который написал тракта «О расчетах при азартных играх», Яков Бернулли (1654—1705), Муавр (1667—1754), Лаплас (1749— 1827), Гаусс (1777—1855) и Пуассон (1781—1840). В наше время теория вероятности используется почти во всех отраслях знаний: в статистике, синоптике (прогноз погоды), биологии, экономике, технологии, строительстве и т. д .

    1.2 Понятие теории вероятностей

    Теория вероятностей - это наука о закономерностях случайных событий. Под случайным событием в теории вероятностей понимается всякое явление, которое может произойти или не произойти (случайным образом) при осуществлении определенного комплекса условий. Каждое такое осуществление называется испытанием, опытом или экспериментом.

    События можно подразделить на достоверные, невозможные и случайные.

    Достоверным называется событие, которое обязательно произойдет при испытании. Невозможным называется событие, которое заведомо не произойдет при испытании. Случайным называется событие, которое в результате эксперимента может либо произойти, либо не произойти (в зависимости от случайных обстоятельств).

    Предметом теории вероятностей являются закономерности массовых случайных событий, где под массовостью мы понимаем многократную повторяемость.

    Рассмотрим несколько событий:

      появление герба при бросании монеты;

      появление трех гербов при трехкратном бросании монеты;

      попадание в цель при выстреле;

      выигрыш по билету денежно-вещевой лотереи.

    Очевидно, что каждое из этих событий обладает какой-то степенью возможности. Для того, чтобы количественно сравнивать между собой события по степени возможности, нужно с каждым событием связать определенное число.

    Вероятность события есть численная мера степени объективной возможности этого события. В качестве единицы измерения вероятности принята вероятность достоверного события. Вероятность невозможного события равна нулю. Вероятность любого случайного события обозначается P и изменяется в диапазоне от нуля до единицы: 0 ≤ P ≤ 1.

    Вероятностью случайного события называется отношение числа n несовместимых равновероятных элементарных событий, составляющих событие, к числу всех возможных элементарных событий N:

    Возникновение теории вероятностей как науки относят к средним векам и первым попыткам математического анализа азартных игр (орлянка, кости). Первоначально её основные понятия не имели строго математического вида, к ним можно было относиться как к некоторым эмпирическим фактам, как к свойствам реальных событий, и они формулировались в наглядных представлениях .

    1.3 Применение теории вероятностей в жизни

    Все мы в той или иной мере используем теорию вероятности, на основе анализе произошедших в нашей жизни событий. Мы знаем, что смерть во время автомобильной аварии боле вероятна, чем от удара молнии, потому что первое, к сожалению, происходит очень часто. Так или иначе мы обращаем на вероятность вещей внимание, чтобы спрогнозировать свое поведение. Но вот обида, к сожалению, не всегда человек может точно определить вероятность тех или иных событий.

    Например, не зная статистики, большинство людей склонны думать, что шанс погибнуть в авиакатастрофе больше, чем в автомобильной аварии. Теперь же мы знаем, изучив факты (о которых, думаю, многие наслышаны), что это совсем не так. Дело в том, что наш жизненный «глазомер» иногда дает сбой, потому что авиатранспорт кажется значительно страшнее людям, привыкшим твердо ходить по земле. Да и большинство людей не так часто используют этот вид транспорта. Даже если мы и может оценить вероятность события верно, то, скорее всего, крайне неточно, что не будет иметь никакого смысла, скажем, в космической инженерии, где миллионные доли решают многое. А когда нам нужна точность, то мы обращаемся к кому? Конечно же, к математике.

    Примеров реального использования теории вероятности в жизни множество. Практически вся современная экономика базируется на ней. Выпуская на рынок определенный товар, грамотный предприниматель наверняка учтет риски, а также вероятности покупки в том или рынке, стране и т.д. Практически не представляют свою жизнь без теории вероятности брокеры на мировых рынках. Предсказывание денежного курса (в котором точно не обойтись без теории вероятности) на денежных опционах или знаменитейшем рынке Forex дает возможность зарабатывать на данной теории серьезные деньги.

    Теория вероятности имеет значение в начале практически любой деятельности, а также ее регулирования. Благодаря оценке шансов той или иной неполадки (например, космического корабля), мы знаем, какие усилия нам нужно приложить, что именно проверить, что вообще ожидать в тысячи километров от Земли. Возможности теракта в метрополитене, экономического кризиса или ядерной войны — все это можно выразить в процентах. А главное, предпринимать соответствующие контрдействия исходя из полученных данных. Любую деятельность любой сферы можно проанализировать, использую статистику, рассчитать благодаря теории вероятности и заметно улучшить.

    Глава 2 Практическая часть 2.1 Монета в теории вероятностей.

    Монета сточки зрения теории вероятностей имеет только две стороны, одна из которых называется «орел», а другая - «решка». Монету бросают, и она падает одной из сторон вверх. Никакие другие свойства математической монете не присущи.

    Проведём опыт. Для начала, возьмем в руки монетку, будем ее бросать и записывать результат последовательно. В нашем случае бросание монетки - это испытание, а выпадение орла или решки - событие, то есть возможный исход нашего испытания (см. Приложение 2).

    № испытания

    Событие: орел или решка

    № испытания

    Событие: орел или решка

    № испытания

    Событие: орел или решка

    Проведя 100 испытаний орел выпал - 55, решка - 45. Вероятность выпадения орла в данном случае-0,55; решки - 0,45. Таким образом, мы показали, что теория вероятности в данном случае имеет место быть.

    2.2 Решение задач по теории вероятностей в ОГЭ

    Самое первое применение теории вероятностей, пришедшее на ум, это решение задач по данной теме, включенных в предстоящий экзамен по математике для 9 класса. Уместнее всего рассмотреть ключевые задачи по теории вероятности, которые идут под номером 9 в ОГЭ.

    Формулы, используемые при решении задач:

    P = , где m - число благоприятных исходов, n - общее число исходов .

    Задание № 1. Монета брошена два раза. Какова вероятность выпадения одного «орла» и одной «решки»?

    Решение: При бросании одной монеты возможны два исхода - «орёл» или «решка». При бросании двух монет - 4 исхода (2*2=4): «орёл» - «решка» «решка» - «решка» «решка» - «орёл» «орёл» - «орёл» Один «орёл» и одна «решка» выпадут в двух случаях из четырёх. Р(А)=2:4=0,5. Ответ: 0,5.

    Задание № 2. Монета брошена три раза. Какова вероятность выпадения двух «орлов» и одной «решки»?

    Решение: При бросании трёх монет возможны 8 исходов (2*2*2=8): «орёл» - «решка» - «решка» «решка» - «решка» - «решка» «решка» - «орёл» - «решка» «орёл» - «орёл» - «решка» «решка» - «решка» -«орёл» «решка» - «орёл» - «орёл» «орёл» - «решка» - «орёл» «орёл» - «орёл» - «орёл» Два «орла» и одна «решка» выпадут в трёх случаях из восьми. Р(А)=3:8=0,375. Ответ: 0,375.

    Задание № 3. В случайном эксперименте симметричную монету бросают четырежды. Найдите вероятность того, что орел не выпадет ни разу.

    Решение: При бросании четырёх монет возможны 16 исходов: (2*2*2*2=16): Благоприятных исходов - 1 (выпадут четыре решки). Р(А)=1:16=0,0625. Ответ: 0,0625.

    Задание № 4. Определите вероятность того, что при бросании кубика выпало больше трёх очков.

    Решение: Всего возможных исходов - 6. Числа большие 3 - 4, 5, 6 . Р(А)= 3:6=0,5. Ответ: 0,5.

    Задание № 5. Брошена игральная кость. Найдите вероятность того, что выпадет чётное число очков.

    Решение: Всего возможных исходов - 6. 1, 3, 5 — нечётные числа; 2, 4, 6 —чётные числа. Вероятность выпадения чётного числа очков равна 3:6=0,5. Ответ: 0,5.

    Задание № 6. В случайном эксперименте бросают две игральные кости. Найдите вероятность того, что в сумме выпадет 8 очков. Результат округлите до сотых.

    Решение: У данного действия — бросания двух игральных костей всего 36 возможных исходов, так как 6² = 36. Благоприятные исходы: 2 6 3 5 4 4 5 3 6 2 Вероятность выпадения восьми очков равна 5:36 ≈ 0,14. Ответ: 0,14.

    Задание № 7. Дважды бросают игральный кубик. В сумме выпало 6 очков. Найдите вероятность того, что при одном из бросков выпало 5 очков.

    Решение: Всего исходов выпадения 6 очков - 5: 2 и 4; 4 и 2; 3 и 3; 1 и 5; 5 и 1. Благоприятных исходов - 2. Р(А)=2:5=0,4. Ответ: 0,4.

    Задание № 8. На экзамене 50 билетов, Тимофей не выучил 5 из них. Найдите вероятность того, что ему попадется выученный билет.

    Решение: Тимофей выучил 45 билетов. Р(А)=45:50=0,9. Ответ: 0,9.

    Задание № 9. В чемпионате по гимнастике участвуют 20 спортсменов: 8 из России, 7 из США, остальные из Китая. Порядок выступления определяется жребием. Найдите вероятность того, что спортсменка, выступающая первой, окажется из Китая.

    Решение: Всего исходов 20. Благоприятных исходов 20-(8+7)=5. Р(А)=5:20=0,25. Ответ: 0,25.

    Задание № 10. На соревнования по метанию ядра приехали 4 спортсмена из Франции, 5 из Англии и 3 из Италии. Порядок выступлений определяется жеребьёвкой. Найдите вероятность того, что спортсмен, выступающий пятым, будет из Италии.

    Решение: Число всех возможных исходов - 12 (4 + 5 + 3 = 12). Число благоприятных исходов - 3. Р(А)=3:12=0,25. Ответ: 0,25 .

    2.3 Практическое применение теории вероятностей. Определение температуры воздуха.

    Можно утверждать наверняка, что каждый из нас хотя бы раз в день интересуется прогнозом погоды. Однако далеко не все знают, что за скромными числами температуры и скорости ветра стоят сложнейшие математические расчеты. Метеорология вообще и прогностическая метеорология в частности являются своего рода идеальной областью проявления неопределенности.

    Эксперимент №1.

    В течение 20 дней мы измеряли температуру воздуха на улице. Для вычисления вероятности того, что 21 сентября температура воздуха на улице будет выше +15 0 C (см. Приложение 1).

    Число и месяц

    День недели

    Температура воздуха

    воскресенье

    понедельник

    воскресенье

    понедельник

    воскресенье

    понедельник

    ИТОГ: m = 20, n = 9, P = 9 / 20 = 0,45

    Вывод: проведя вычисления делаем вывод, что так как вероятность меньше 0,5, то скорее всего 21 сентября на улице температура воздуха будет ниже 15 0 . Что подтверждается практически. Температура воздуха 21 сентября +13 0 .

    Эксперимент №2.

    В течение 15 дней мы измеряли температуру воздуха на улице. Для вычисления вероятности того, что 7 октября температура воздуха на улице будут ниже +10 0 C (см. Приложение 3).

    Число и месяц

    День недели

    Температура воздуха

    воскресенье

    понедельник

    воскресенье

    понедельник

    воскресенье

    ИТОГ: m = 15, n = 12, P = 12 / 15 = 0,8

    Вывод: проведя вычисления делаем вывод, что так как вероятность больше 0,8, то скорее всего 7 октября на улице температура воздуха будет ниже +10 0 . Что подтверждается практически. Температура воздуха 07 октября +7 0 .

    Заключение

    В ходе работы были изучены основные сведения о применении теории вероятности в жизни. Умение решать задачи по теории вероятности необходимо каждому человеку, так как возможность предсказать то или иное событие позволяет преуспеть во многих областях нашей деятельности.

    В результате работы было выявлено:

      Теория вероятностей - это огромный раздел науки математики и сфера его применения очень разнообразна. Перебрав множество фактов из жизни, и проведя эксперименты, с помощью теории вероятностей можно предсказать события, происходящие в различных сферах жизнедеятельности;

      Теория вероятностей - это целая наука, которой, казалось бы, нет места для математики, - какие уж законы в царстве Случая? Но и здесь наука обнаружила интересные закономерности. Если подбросить монету, то нельзя точно сказать, какой стороной она ляжет вверх - гербом или цифрой. Но проведя испытания, оказывается, что при многократном повторении опыта частота события принимает значения, близкие к 0,5.

      Теория вероятности имеет широкое применение: для прогнозирования погоды, для покупки исправных автомобилей, также для покупки исправных лампочек и разное другое. Мы провели два эксперимента, на прогнозирование погоды в определенное число и время. Тория вероятности действительно применяется не только для учебников, но и в повседневной жизни также может найти применение.

    На примере данной работы можно сделать и более общие выводы: подальше держаться от всяких лотерей, казино, карт, азартных игр вообще. Всегда надо подумать, оценить степень риска, выбрать наилучший из возможных вариантов - это пригодится и в дальнейшей жизни. Таким образом, поставленная в работе цель выполнена, решены поставленные задачи и сделаны соответствующие выводы.

    Список используемой литературы

    1. Бородин А.Л. Элементарный курс теории вероятностей и математической статистики / А.Л. Бородин. - СПб.: Лань, 2004.

    2. Клентак Л.С. Элементы теории вероятностей и математической статистики / Л.С. Клентак. - Самара: Издательство СГАУ, 2013.

    3. Мордович А.Г. События. Вероятности. Статистическая обработка данных / А.Г Мордович, П.В Семенов. - М.: Мнемозина, 2004.

    4. Открытый банк задания по математике ОГЭ [Электронный ресурс] // URL:

    http://oge.fipi.ru/os/xmodules/qprint/index.php?theme_guid=5277E3049BBFA50A46567B64CE413F29&proj_guid=DE0E276E497AB3784C3FC4CC20248DC0 (дата обращения 10.09.2018).

    5. Фадеева Л.Н. Теория вероятностей и математическая статистика / Л.Н. Фадеева, А.В. Лебедев; под ред. Фадеевой. - 2-е изд. - М.: Эксмо, 2010. - 496 с.

    Приложения Приложение 1 Приложение 2 Приложение 3

    Денисова Екатерина

    Доклад на научно-практическую конференцию

    Скачать:

    Предварительный просмотр:

    Открытая

    Международная

    Научно – исследовательская

    конференция

    Старшеклассников и студентов

    «Образование. Наука. Профессия»

    Секция «Математика»

    «Теория вероятности в нашей жизни»

    Выполнила: Денисова Екатерина, ученица 11 класса

    МОУ Кабановская СОШ

    Руководитель: Золотарёва Валентина Викторовна,

    Учитель математики

    г. Отрадный

    2012 год

    1. Основная часть
    1. Основные понятия теории
    2. Задачи и примеры
    3. Прогнозирование результатов сдачи ЕГЭ по математики в 2012 году
    1. Заключение. Практическое применение теории вероятности
    1. Вступление. Миром правит случайность

    «Теория вероятностей есть в сущности

    Не что иное, как здравый смысл, сведенной к исчислению»

    Лаплас

    С первого взгляда может показаться, что никаких законов, управляющих явлениями в нашей жизни нет и быть не может. Однако, если разобраться, случайные явления происходят не так уж хаотически. Во многих случаях обнаруживаются закономерности. Эти закономерности не похожи на обычные законы физических явлений; они весьма разнообразны. Так, каждому из нас каждый день приходиться принимать множество решений в условиях неопределенности. Однако эту неопределенность можно «превратить» в некоторую определенность. И тогда это знание может оказать существенную помощь при принятии решения .

    У каждого «случайного» события есть четкая вероятность его наступления.

    В стабильной системе вероятность наступления событий сохраняется из год в год. То есть, с точки зрения человека с ним произошло случайное событие. А с точки зрения системы, оно было предопределенно.

    Разумный человек должен стремиться мыслить, исходя из законов вероятностей (статистики). Но в жизни о вероятности мало кто думает. Решения принимаются эмоционально.

    Люди боятся летать самолетами. А между тем, самое опасное в полете на самолете - это дорога в аэропорт на автомобиле. Но попробуй кому-то объяснить, что машина опасней самолета.

    По исследованиям: в США в первые 3 месяца после терактов 11 сентября 2001 года погибло еще одна тысяч людей... косвенно. Они в страхе перестали летать самолетами и начали передвигаться по стране на автомобилях. А так как это опасней, то количество смертей возросло.

    Миром правит вероятность и нужно помнить об этом.

    II.Основная часть

    1. История возникновение теории вероятности

    Слово « вероятность », синонимом которого является, например, слово «шанс» достаточно часто применяется в повседневной жизни. Думаю, каждому знакомы фразы: «Завтра, вероятно, выпадет снег», или «вероятнее всего в выходные я поеду на природу», или «это просто невероятно», или «есть шанс получить зачет автоматом». Такого рода фразы на интуитивном уровне оценивают вероятность того, что произойдет некоторое случайное событие.

    Исходы многих явлений невозможно предсказать заранее, какой бы полной информацией мы о них не располагали. Нельзя, например, сказать наверняка, какой стороной упадет брошенная вверх монета, когда в следующем году выпадет первый снег или сколько человек в городе захотят в течение ближайшего часа позвонить по телефону.

    Такие непредсказуемые явления называются случайными.

    Теория вероятностей оформилась в самостоятельную науку относительно не давно, хотя история теории вероятностей началась еще в античности. Так, Лукреций, Демокрит, Кар и еще некоторые ученые древней Греции в своих рассуждениях говорили о равновероятностных исходах такого события, как возможность того, что вся материя состоит из молекул. Таким образом, понятие вероятности использовалось на интуитивном уровне, но оно не было выделено в новую категорию. Тем не менее, античные ученые заложили прекрасный фундамент для возникновения этого научного понятия. В средние века, можно сказать, и зародилась теория вероятности, когда были приняты первые попытки математического анализа, таких азартных игр как кости, орлянка, рулетка. В археологических раскопках специально обработанные для игры кости животных встречаются, начиная с V века до н.э. Самый древний игральный кубик найден в Северном Ираке и относится к IV тысячелетию до н.э. Люди, многократно следившие за бросанием игральных костей, замечали некоторые закономерности, управляющие этой игрой.

    Результаты этих наблюдений формулировались как «Золотые правила» и были известны многим игрокам.

    Одна из самых знаменитых задач, способствовавших развитию теории вероятностей, была задача о разделе ставки, помещенная в книге Луки Паччиоли (1445- ок.1514).

    Книга называлась «Сумма знаний по арифметике, геометрии, отношении и пропорции» и была опубликована в Венеции в 1494 году.

    Следующим человеком, который внес значительный вклад в осмысление законов, управляющих случаем, был Галилео Галилей (1564 -1642).

    Именно он заметил, что результаты измерений носят случайный характер.

    Первые научные работы по теории вероятностей появились в 17 веке. Когда такие ученые как Блез Паскаль и Пьер Ферма открыли некоторые закономерности, которые возникают при бросании костей. В ту же пору к данному вопросу проявлял интерес еще один ученый Христиан Гюйгенс. Он в 1657 в своей работе ввел следующие понятия теории вероятностей: понятие вероятности как величины шанса или возможности; математическое ожидание для дискретных случаев, в виде цены шанса, а также теоремы сложения и умножения вероятностей, которые правда не были сформулированы в явном виде. Тогда же теория вероятностей стала находить сферы своего применения – демографию, страховое дело, оценку ошибок наблюдений.

    Но как математическая наука теории вероятностей начинается с работы выдающегося швейцарского математика Якоба Бернулли (1654 -1705) «Искусство предположений».

    В этом трактате доказано ряд теорем, в том числе и самая известная теорема «Закон больших чисел»

    Самый существенный вклад в заложение основ теории внес Колмогоров А.Н.

    На сегодняшний день теории вероятностей это самостоятельная наука, имеющая огромную сферу применения.

    1. Основные понятия теории

    Возьмем, к примеру, игру в монету. При бросании может быть два равновероятных исхода: монета может упасть кверху гербом или решкой. Бросая монету один раз нельзя предугадать, какая сторона окажется сверху. Однако, бросив монету 100 раз, можно сделать выводы. Можно заранее сказать, что герб выпадет не 1 и не 2 раза, а больше, но и не 99 и не 98 раз, а меньше. Число выпадений герба будет близко к 50. На самом деле, и на опыте можно в этом убедиться, что это число будет заключено между 40 и 60.

    Так же статистически установлено, что на 1000 детей приходится 511 мальчиков и 489 девочек (т.е. 48,9% и 51,1% соответственно). Эта информация позволяет нам с большой точностью предсказывать вероятность количества мальчиков или девочек в тот или иной год (эти расчеты, например, используются призывной комиссией).

    • Предметом исследования в теории вероятностей являются события , появляющиеся при определенных условиях, которые можно воспроизводить неограниченное количество раз.
    • Каждое осуществление этих условий называют испытанием

    Примеры испытаний: бросание игральной кости, взвешивание тела на аналитических весах

    Примеры событий: выпадение шестерки или выпадение четного числа очков, ошибка измерения не превзойдет заранее заданного числа

    Степень объективной возможности случайного события можно измерять числом.

    Это число называется вероятностью случайного события.

    Около этого числа группируются относительные частоты данного случайного события

    Событие называется достоверным, если оно наступает всегда, при любом испытании.

    Вероятность достоверного события всегда равна 1.

    Примеры достоверных событий

    1. На игральном кубике выпадет меньше семи очков;
    2. После лета наступит осень.

    Событие называют невозможным , если оно не наступает никогда, то есть благоприятных исходов для него 0.

    Вероятность невозможного события равна 0 .

    Примеры невозможных событий

    1. Падение монеты на ребро

    1. Выпадение на игральной кости семерки

    Событие называется случайным , если при одних и тех же условиях оно может как произойти, так и не произойти.

    Примеры случайных событий

    1. Выпадение на игральном кубике четного числа очков;
    2. Выпадение орла при бросании монеты;
    3. Выигрышное сочетание чисел на карточках русского лото.

    Объединением событий A и B называется событие, состоящее в том, что в результате опыта произошло хотя бы одно из этих событий (т.е. ).

    Пересечением событий A и B называется событие, состоящее в том, что в результате опыта произошли оба из этих событий (т.е. ).

    События A и B называются несовместными , если они не могут наступить одновременно, или, на языке множеств, A ∩ B = ∅ .

    Примеры несовместных событий

    1. При бросании двух кубиков выпадение нечетной суммы очков и равных чисел на обоих кубиках;
    2. Из короба с разноцветными шарами вытащить 2 шара. Несовместными будут события: оба шара красные и оба шара синие.

    События A и B называются независимыми , если вероятность их произведения равна произведению их вероятностей: P(AB) = P(A) ⋅ P(B).

    Примеры независимых событий

    1. На обоих кубах выпадет шестерка;
    2. При подбрасывании двух монет выпадут два орла;
    3. При вытаскивании двух шаров из урны оба шара будут красными.

    С каждым событием A связано противоположное событие , состоящее в том, что событие A не осуществляется.

    Противоположные события, очевидно, несовместны.

    Сумма вероятностей противоположных событий равна 1

    Примеры противоположных событий

    1. На кубике выпадет четное число и на кубике выпадет нечетное число;
    2. Монета упала орлом вверх и монета упала вверх решкой;
    3. Лампа горит и лампа не горит.

    Событие A благоприятствует событию B, если из того, что произошло событие A следует событие B. (т.е. )

    Условной вероятностью события В при условии А называют отношение

    Закон больших чисел.

    Пусть K раз мы проделали испытания, и N раз в результате опыта произошло событие A. Тогда число будет называться частотой появления события А.

    Всегда можно выбрать достаточно большое N, чтобы выполнялось соотношение:

    где (ипсилон) - сколь угодно малое положительное неравное нулю число.

    Это значит, что при достаточно большом количестве испытаний частота появления того или иного события будет сколь угодно мало отличаться от нуля.

    Это соотношение дает возможность устанавливать опытным путем с достаточно хорошим приближением вероятность неизвестного нам события.

    3. Задачи и примеры.

    Первые расчеты вероятностей событий начались еще в XVII веке с подсчета шансов игроков в азартных играх. В первую очередь это была игра в кости.

    Задача 1.

    Бросили кость. Какова вероятность того, что выпало число 5?

    Решение.

    Всего существует 6 вариантов выпадения кости (n = 6). Все эти варианты равновероятны, т.к. кость сделана так, что у всех сторон есть одинаковые шансы оказаться сверху, следовательно, m = 1; значит

    Где Р(5) – вероятность выпадения пятерки.

    Задача 2.

    Какова вероятность того, что при бросании выпадет четное число очков?

    Решение.

    Благоприятных возможностей здесь три: 2; 4; 6. Поэтому m = 3, всего исходов 6 (n = 6), следовательно

    Где P(четн.) – вероятность выпадения четного номера.

    Задача 3.

    Бросили 2 игральные кости и подсчитали сумму выпавших очков. Что вероятней – получить в сумме 7 или 8?

    Решение.

    Нас интересуют события A = «выпало 7 очков» и B = «выпало 8 очков». Число всех возможных исходов n = 6 2 = 36 (каждое из 6 очков на белой кости может сочетаться с любым из 6 очков на черной кости). Из этих 36 исходов событию A будут благоприятствовать исходы: (1; 6); (2; 5); (3; 4); (4; 3); (5; 2); (6; 1), т.е. всего 6 (m = 6). По формуле имеем:

    Событию B будут благоприятствовать исходы: (2;6); (3;5); (4;4); (5;3); (6;2), т.е. всего 5. По формуле, имеем:

    Следовательно, получить в сумме 7 очков – более вероятное событие, чем получить 8.

    Эта задача впервые была решена игроками в кости, и уже потом – решена математически. Она стала одной из первых, при обсуждении которых начала складываться Теория.

    Определение: Два события А и В называются независимыми, если выполняется равенство:

    Задача 4.

    Два охотника независимо друг от друга одновременно стреляют по зайцу. Заяц будет убит, если попали оба. Какие у зайца шансы выжить, если первый охотник попадает с вероятностью 0,8, а второй с вероятностью 0,75?

    Решение.

    Рассмотрим два события: А = «в зайца попал 1-й охотник» и В = «в зайца попал 2-й охотник». Нас интересует событие (т.е. произошло и событие A и событие В). В силу независимости событий, имеем:

    Это значит, что в 6 случаях из 10 зайца пристрелят.

    Задача 5.

    Один французский рыцарь, де Мере, был страстным игроком в кости. Он всячески старался разбогатеть и придумывал для этого разные усложненные правила.

    Он, в частности, придумал такие правила: бросают 4 кости и он бьется об заклад, что хотя бы на одной выпадет 6. Он считал, что в большей части случаев он останется в выигрыше. Чтобы подтвердить это, он обратился к своему старому знакомому – Блезу Паскалю с просьбой рассчитать, какова вероятность выигрыша в этой игре.

    Приведем расчет Паскаля.

    При каждом отдельном бросании вероятность события A = «выпала шестерка» = . Вероятность события B = «не выпала шестерка» = . Кубики не зависят друг от друга, следовательно, по формуле

    вероятность того, что шестерка не выпадет два раза подряд, составляет

    Точно так же показывается, что при трехкратном бросании вероятность невыпадения 6 составляет

    А при четырехкратном –

    А , следовательно, вероятность выигрыша . Значит, при каждой игре больше половины шансов было за то, что де Мере выиграет; при многократном повторении игры он наверняка оставался в выигрыше.

    Резонно поставить вопрос, какой должна быть вероятность события, чтобы можно было считать его достоверным? Известно, что примерно 5% назначенных концертов отменяется, однако это не мешает нам покупать билеты. Но если бы 5% самолетов разбивались, то вряд ли бы кто-нибудь стал пользоваться воздушным транспортом.

    III.Заключение. Практическое применение теории вероятности

    Однако уже в конце XVII в. начали пользоваться Теорией при страховании кораблей, т.е. начали подсчитывать, сколько шансов на то, что корабль вернется в порт невредимым, не будет потоплен бурей, что груз не подмокнет, что он не будет захвачен пиратами и т.д. Такой расчет позволял определять, какую страховую сумму следует выплачивать и какой страховой взнос брать, чтобы это было выгодно для компании.

    В первой половине XVIII в. для теории много сделал Яков Бернулли – член Российской Академии наук. Следует отметить труды С. Лапласа, С. Пуассона, К. Гаусса.

    При всем при том, в течение второй половины XVIII в. Теория в известном смысле «топталась на месте». В то время была еще не ясна связь между различными явлениями в жизни и наукой о массовых явлениях. В середине XIX в. большой сдвиг в развитии Теории сделал русский математик П. Чебышев. Внесли большой вклад Марков, Ляпунов, Бернштейн, Колмогоров.

    Теория сыграла большую практическую роль во Второй Мировой войне. Приведем пример из военной области. Понятно, что очень трудно сбить самолет одним выстрелом из винтовки. Ведь стрелок должен не только попасть в самолет, но поразить самое уязвимое место, например топливный бак. Поэтому вероятность того, что один стрелок собьет винтовкой самолет, ничтожна. Совсем другое дело – массовый обстрел. Если предположить, что вероятность сбить самолет одной винтовкой равна 0,004; соответственно, вероятность промаха – 0,996. Теперь предположим, что стреляют 500 стрелков; как мы доказали выше, вероятность промаха составляет

    Таким образом, вероятность сбить самолет одним залпом равна 0,86. А если есть возможность произвести 2 – 3 залпа, то шансы у самолета уцелеть близки к нулю.

    Так же Теория позволяла определять районы, в которых имели смысл поиски самолетов и подводных лодок или указывать пути, чтобы избежать встречи с ними. Типичной здесь является задача о том, как выгоднее вести караваны торговых судов по океану, в котором действуют вражеские подлодки. Если организовывать караваны из большого числа судов, то можно будет обойтись меньшим числом рейдов, но и возможные потери при встрече с флотом врага будут больше. Теория помогла рассчитать оптимальные размеры караванов и частоту их отправления. Задач такого рода возникало немало, поэтому при штабах организовывались специальные группы, занимающиеся расчетами вероятностей. После войны подобные расчеты стали применяться к хозяйственным вопросам мирного времени. Они составляли содержание нового большого направления, названного исследованием операций, которое оформляется в целую науку.

    Множество людей начиная играть в рулетку, вспоминают о том, что они когда-то слышали о теории вероятности.

    К сожалению, вся эта "теория вероятности" не поможет при игре в рулетку, а только причинит вред.

    Что из этого следует - только то, что использовать вероятности можно при неограниченном увеличении числа повторений опыта. Когда же мы играем в рулетку, мы имеем достаточно ограниченное число повторений опыта (вращений колеса рулетки). Для неограниченном увеличении числа опытов, у нас нет в запасе неограниченного количества денег и времени.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием