Причины чудовищных молний космические лучи. Молния, природа и причины возникновения молнии

Молния - это искровой разряд статического электричестве, аккумулированного в грозовых облаках. В отличие от разрядов, образующихся на производстве и в быту, электрические заряды, накапливаемые в облаках, несоизмеримо больше. Поэтому энергия искрового разряда - молния и возникающих при этом токов очень велика и представляет большую опасность для человека, животных, строений. Молния сопровождается звуковым импульсом - громом. Сочетание молнии и грома называют грозой.

Гроза - это исключительно красивое природное явление. Как правило, после грозы улучшается погода, воздух становится прозрачен, свеж и чист, насыщен ионами, образующимися при разрядах молнии. Несмотря на это нужно помнить, что гроза в определенных условиях может представлять большую опасность для человека. Каждый человек должен знать природу грозового явления, правила поведения во время грозы и методы защиты от молнии. Гроза - сложный атмосферный процесс и ее возникновение обусловлено образованием кучево-дождевых облаков. Сильная облачность является следствием значительной неустойчивости атмосферы. Для грозы характерны сильный ветер, часто интенсивный дождь «снег», иногда с градом. Перед грозой «за час, два» атмосферное давление начинает быстро падать, вплоть до внезапного усиления ветра, а затем начинает повышаться.

Грозы можно разделить на местные, фронтальные, ночные, в горах. Наиболее часто человек сталкивается с местными, или тепловыми грозами. Водяной пар в восходящем потоке теплого воздуха на высоте конденсируется, при этом выделяется много тепла, и восходящие потоки воздуха нагреваются, По сравнению с окружающим восходящий воздух теплее, он увеличивается н объеме, пока не превратится в грозовое облако. В больших по размеру грозовых облаках присутствуют кристаллики льда и капельки воды. В результате их дробления и трения между собой и о воздух образуются положительные и отрицательные заряды, под действием которых возникает сильное электростатическое поле «напряженность электростатического поля может достигать 100 ООО В/м». И разница потенциалов между отдельными частями облака, облаками или облаком и землей достигает громадных величин. При достижении критической электрической напряженности в воздухе возникает лавинообразная ионизация воздуха - искровой разряд молнии.

Фронтальная гроза возникает, когда массы холодного воздуха проникают в район, где преобладает теплая погода. Холодный воздух вытесняет теплый, при этом последний поднимается на высоту 5--7 км. Теплые слои воздуха вторгаются внутрь вихрей различной направленности, образуется шквал, сильное трение между слоями воздуха, что способствует накоплению электрических зарядов. Длина фронтальной грозы может достигать 100 км. В отличие от местных гроз после фронтальных обычно холодает. Ночная гроза связана с охлаждением земли ночью и образованием вихревых токов нисходящего воздуха.

Гроза в горах объясняется разницей в солнечной радиации, которой подвергаются южные и северные склоны гор. Ночные и горные грозы носильные и кратковременные. Грозовая активность в различных районах нашей планеты различна. Мировые очаги гроз: остров Ява - 220 грозовых иней в году; Экваториальная Африка - 150; Южная Мексика - 142; Панама 132; Центральная Бразилия - 106. Россия: Мурманск - 5; Архангельск - 10; Санкт-Петербург - 15; Москва - 20. Как правило, чем южнее «для северного полушария Земли» и севернее «для южного полушария Земли», тем выше грозовая активность. Грозы в Арктике и Антарктике очень редки. Пи Земле в год происходит 16 миллионов гроз. На каждый м2 поверхности земли приходится 2-3 удара молнии в год. В землю чаще всего ударяют молнии из отрицательно заряженных облаков.

По виду молнии различаются на: линейные, жемчужные и шаровые. Жемчужные и шаровые молнии довольно редкое явление. Их характеристики: распространенная линейная молния, с которой многократно встречается любой человек, имеет вид разветвляющейся линии. Величина силы тока в канале линейной молнии составляет в среднем 60 - 170 кА, зарегистрирована молния с током 290 кА. Средняя молния имеет энергию Л0 кВт/час «900 МДж». Разряд развивается за несколько тысячных долей секунды; при столь высоких токах воздух в зоне канала молнии практически мгновенно разогревается до температуры 30000 - 33000°С. В результате резко попытается давление, воздух расширяется и возникает ударная волна, сопровождающаяся звуковым импульсом - громом. *Жемчужная молния - очень редкое и красивое явление. Появляется сразу после линейной молнии и исчезает постепенно. Чаще всего разряд жемчужной молнии следует по пути чиненной. Молния имеет вид 12 м друг от друга и напоминающих жемчуг, нанизанный на нитку. Жемчужная молния может сопровождаться исключительными звуковыми эффектами.

Шаровая молния также довольно редка. На тысячи обычных линейных молний приходится 2 -3 шаровых. Шаровая молния, как правило, появляется чаще к концу грозы, реже - после грозы. Может иметь форму шара, эллипсоида, груши, диска и даже цепи шаров. Цвет Молнии - красный, желтый, оранжево-красный. Иногда молния ослепительно белая с очень резкими очертаниями. Цвет определяется содержанием различных веществ в воздухе. Форма и цвет молнии могут меняться во время разряда. Измерить параметры шаровой молнии и смоделировать ее в лабораторных условиях не удалось. По всей видимости, многие наблюдаемые неопознанные летающие объекты «НЛО» по своей природе аналогичны или близки шаровой молнии.

Опасные факторы воздействия молнии: Линейная молния. В связи с тем, что молния характеризуется большими величинами токов, напряжений и температр разряда, воздействие ее на человека, как правило, приводит к их смерти. От удара молнии в мире в среднем ежегодно погибает около 3000 человек причем известны случаи одновременного поражения нескольких человек. Разряд молнии проходит по пути наименьшего электрического сопротивления: если расположить рядом две мачты - металлическую и бол со высокую деревянную, то молния, скорее всего, ударит в металлическую мачту, хотя она ниже, потому что электропроводность металла выше; молния также значительно чаще ударяет в глинистые и влажные участки, чем в сухие и песчаные, поскольку первые обладают большей электропроводностью; в лесу молния действует тоже избирательно, попадая, прежде всего, в такие лиственные деревья как дуб, тополь, верба, ясень, так как в них содержится много крахмала. Хвойные деревья -- ель, пихта, лиственница и такие лиственные деревья как липа, грецкий орех, бук содержат много масел, поэтому оказывают большое электрическое сопротивление, и в них молния ударяет реже.

Из 100 деревьев молнией поражается: 27 процентов тополей; 20 процентов груш; 12 процентов лип; 8 процентов елей и только 0,5 процент кедровых. Кроме поражения людей и животных линейная молния довольно часто является причиной возникновения лесных пожаров, а также жилых и производственных зданий, особенно в сельской местности. В связи с этим необходимо принимать специальные защиты от поражения линейной молнией. Шаровая молния. Если природа линейной молнии ясна, а, следовательно, и ее поведение предсказуемо, то природа шаровой молнии до сих пор не понятна. Опасность поражения человека шаровой молнией, прежде всего, связанна именно с отсутствием методов и правил защиты человека от нее.

В 1753 году русский физик Георг Вильгельм Рихман, коллега М.В. Ломоносова, был убит шаровой молнией во время грозы при исследовании искровых разрядов в атмосфере. Известны многие случаи гибели людей при встрече с шаровой молнией. Драматический случай произошел с группой из пяти советских альпинистов 17 августа 1978 года на Кавказе на высоте около 4000м, где они остановились в ясную, холодную ночь на ночлег. В палатку к альпинистам залетел светло-желтый шар величиной с теннисный мяч. Шар парил над спальными мешками, в которых находились альпинисты, и методично, по какому-то собственному плану, проник в спальные мешки. Каждый такой «визит» вызывал отчаянный нечеловеческий крик, люди чувствовали сильнейшую боль, как будто их жгли автогеном, и теряли сознание. Они не могли двигать ни руками, ни ногами. После того как шар «посетил» спальные мешки каждого альпиниста по несколько раз, он исчез. Все альпинисты получили множество тяжелых ран. Это были не ожоги, а именно рваные раны: мышцы были вырваны целыми кусками, до самых костей. Одного из альпинистов - Олега Коровина - шар убил. При этом шаровая молния не коснулась ни одного предмета в палатке, а только покалечила людей.

Поведение шаровой молнии непредсказуемо. Она неожиданно появляется где угодно, в том числе в закрытых помещениях. Замечены случаи появления шаровой молнии из телефонной трубки, электрической бритвы, выключателя, розетки, репродуктора. Она достаточно часто проникает в здания через трубы, открытые окна и двери. Размеры шаровой молнии бывают от нескольких сантиметров до нескольких метров. Обычно она легко парит или катится над землей, иногда подскакивает. Она реагирует на ветер, сквозняк, восходящие и щи ходящие потоки воздуха. Однако отмечен случай, когда шаровая молния не реагировала на поток воздуха.

Шаровая молния может появиться, не нанеся вреда человеку или помещению, залететь в окно и исчезнуть из помещения через открытую дверь или дымовую трубу, пролетев мимо человека. Всякий контакт с ней приводит к тяжелым травмам, ожогам, а в большинстве случаев к смертельному исходу. Широкая молния может взорваться. Возникающая при этом воздушная волна способна травмировать человека или привести к разрушениям в здании. Известны случаи взрывов молний в печках, дымоходах, что приводило к разрушению последних. Собранные свидетельства о поведении шаровой миопии говорят, что в большинстве случаев взрывы не были опасны, тяжелые последствия возникали в 10 случаях из 100. Считается, что шаровая молния имеет температуру около 5000°С и может вызвать пожар.

`Правила поведения во время грозы:

Вспышку молнии мы видим практически мгновенно, та как свет распространяется со скоростью 300 000 км/с. Скорость распространения звука в воздухе равна примерно 344 м/с, то есть примерно за 3 секунды звук проходит 1 км. Молния опасна тогда, когда за вспышкой тут же следует раскат грома, значит, грозовое облако находится над Вами, и опасность удара молнии наиболее вероятна. Ваши действия перед грозой и во время нее должны быть зимующими: выходить из дома, закрыть окна, двери и дымоходы, позаботиться, чтобы не было сквозняка, который может привлечь шаровую молнию. Во время грозы не топить печку, так как дым, выходящий из трубы имеет высокую электропроводность, и вероятность удара молнии в возвышающуюся над крышей трубу возрастает; во время грозы подальше держаться от электропроводки, антенн, окон, дверей и всего остального, связанного с внешней средой. Не располагаться у стены, рядом с которой растет высокое дерево; радио и телевизоры отключать от сети, не пользоваться электроприборами и телефоном «особенно это важно для сельской местности»; «и время прогулки спрятаться в ближайшее здание. Особенно опасна гроза в поле. При поиске укрытия отдайте предпочтение металлической конструкции больших размеров или конструкции с металлической рамой, жилому дому или фугой постройке, защищенной молниеотводом; если нет возможности укрыться в здании, не надо прятаться в небольших сараях, под одинокими деревьями; не оставаться на возвышенностях и открытых незащищенных местах, вблизи металлических или сетчатых оград, крупных металлических объектов, влажных стен, заземления молниеотвода; при отсутствии укрытия лечь на землю, при этом предпочтение следует отдать сухому песчаному грунту, удаленному от водоема; если гроза застала Вас в лесу, необходимо рыться на участке с низкорослыми деревьями. Нельзя укрываться под высокими деревьями, особенно соснами, дубами, тополями. Лучше находиться ни расстоянии 30 м от отдельно высокого дерева. Обратите внимание - нет ли рядом деревьев, ранее пораженных грозой, расщепленных. Лучше держаться подальше от этого места. Обилие пораженных молнией деревьев свидетельствует, что грунт на данном участке имеет высокую электропроводность, и удар молнии в тин участок местности весьма вероятен во время грозы нельзя находиться на воде и у воды - купаться, ловить рыбу. Необходимо подальше отойти oт берет, и горах отойдите от горных гребней острых возвышающихся скип и вершин. При приближении в горах грозы нужно спуститься как можно ниже. Металлические предметы - альпинистски» крючья, ледорубы, кастрюли собрать в рюкзак и спустить на веревке на 20-30 м ниже по склону; во время грозы не занимайтесь спортом на открытом воздухе, не бегите, так как считается, что пот и быстрое движение «притягивает» молнию; если вы застигнуты грозой на велосипеде или мотоцикле, прекратите движение, оставьте их и переждите грозу на расстоянии примерно 30 м от них; если гроза застала вас в автомобиле, не нужно его покидать. Необходимо закрыть окна и опустить автомобильную антенну. Двигаться во время грозы на автомобиле не рекомендуется, поскольку гроза, как правило, сопровождается ливнем, ухудшающем видимость на дороге, а вспышка молнии может ослепить и вызвать испуг и, как следствие, аварии; при встрече с шаровой молнией не проявляйте по отношению к ней никакой активности, по возможности сохраняйте спокойствие и не двигайтесь. Не нужно приближаться к ней, касаться ее чем-либо, т.к. может произойти взрыв. Не следует убегать от шаровой молнии, потому что это может повлечь ее ш собой возникшим потоком воздуха.

Молниезащита:

Эффективным средством защиты от молнии является молниеотводы, Приоритет изобретения молниеотвода принадлежит американцу Бенджамину Франклину «1749 год». Несколько позднее в 1758 год, независимо от него, молниеотвод изобрел М.В. Ломоносов. Молниезащита путем установки молниеотводов основана на свойстве молнии, поражать наиболее высокие и хорошо заземленные металлические сооружения. Молниеотвод состоит из трех основных частей: молниеприемника, воспринимающего удар молнии; токовода, соединяющего молниеприемник с заземлителем, через который ток молнии стекает в землю. По типу монниеприемников наиболее распространены стержневые и тросовые. Молниеотводы разделяются на: одиночные, двойные и многократные.

Окрест молниеотвода образуется зона защиты, то есть пространство, и пределах которого обеспечивается защита строения или какого-либо другого объекта от прямого удара молнии. Степени защиты в указанных зонах составляют более 95 процентов. Это означает, что из 100 ударов молнии н защищенный объект возможно менее 5 случаев попадания, остальные удары будут восприняты молниеприемником. Зона защиты ограничивается образующими двух конусов, один из которых имеет высоту h, равную высоте молниеотвода, и радиус основания R = 0,75 h, а другой - высоту 0.8 h и радиус основания 1,5 h «при радиусе основания второго конуса R = h эффективность защиты обеспечивается на 99 процентов».

Молниеприемники стержневых молниеотводов изготавливают из стали любого профиля, как правило, круглого, сечением не менее 100мм2 и длиной не менее 200мм. Для защиты от коррозии ох окрашивают. Молниеприемники тросовых молниеотводов изготавливают из металлических тросов диаметром около 7мм. Тоководы должны выдерживать нагрев при протекании очень больших токов разряда молнии в течение короткого промежутка времени, поэтому их делают из металлов с небольшим сопротивлением. Сечение тоководов на воздухе не должно быть менее 48 мм2, а в земле - 160мм 2. заземлители являются важнейшим элементом молниезащиты. Их назначение обеспечивать достаточно малое сопротивление растеканию тока молнии в грунте. В качестве заземлителя можно использовать зарытые в землю на глубину 2 - 2,5м металлические трубы, плиты, мотки проволоки и сетки, куски (хищнической арматуры. Молниеотводы желательно устанавливать на возвышенностях, чтобы сократить путь молнии и увеличить размеры зоны защиты. Дымовые трубы, фронтоны, выступы на крыше, телевизионные антенны нужно заземлить с помощью тоководов. Металлические водосточные трубы и лестницы, ведущие на крышу, желательно соединить с тоководом или заземлить отдельно.

Гигантские электрические разряды в атмосфере - молнии - возникают под влиянием потоков заряженных частиц из космоса, так называемых космических лучей, а сами разряды сопровождаются вспышками гамма-излучения, установила группа ученых из Физического института имени Лебедева РАН (ФИАН) под руководством академика Александра Гуревича.

Природа молний была разгадана еще в 1749 году американским естествоиспытателем Бенджаменом Франклином, который установил, что молнии - это электрические разряды между грозовым облаком и землей. До сих пор ученые полагали, что при накоплении отрицательных зарядов в облаке между ним и поверхностью возникает электрическое поле, и когда оно достигает определенной пороговой энергии, возникает "пробой" и происходит электрический разряд - молния.

"Все бы замечательно, но расчетное значение порогового поля в десять раз превосходит реально наблюдаемое значение электрического поля, при котором возникают молнии", - сказал в беседе с РИА Новости один из участников исследовательской группы Гуревича - член-корреспондент РАН Кирилл Зыбин.

"Нужна какая-то затравка для молнии, по-видимому, требуются затравочные частицы достаточно больших энергий. В природных условиях такими естественными частицами являются космические лучи", - сообщил собеседник агентства.

Он и его коллеги выяснили, что с возникновением молний связано явление, названное "пробоем на убегающих электронах" - лавинообразное размножение в веществе быстрых электронов с энергией 0,1-10 мегаэлектронвольт, причиной чего, в свою очередь, является действие космических излучений. Потоки частиц высоких энергий, проникающие в атмосферу, поставляют "затравочные электроны", которые и провоцируют пробой при полях в десять раз меньших, чем требовала прежняя теория.

"Конечно, сказать, что молния - это пробой на убегающих электронах, нельзя. Но они связаны. В обычных разрядах не могли появляться такие большие энергии в гамма-квантах", - сообщил Зыбин.

По его словам, экспериментальная проверка теории вызывает большие сложности: при нормальных атмосферных условиях длина "лавины", возникающей при пробое, достигает 50 метров.

"В этом случае вам надо строить огромные машины, прикладывать очень большие поля. Но такие условия естественно реализуются в грозовой атмосфере", - сказал он.

Еще один эффект, связанный с молниями, - гамма-вспышки. Молнии двигаются не равномерно, а скачками - "степами". Ученые обнаружили, что при каждом "степе" излучаются гамма-кванты энергией в десятки мегаэлектронвольт.

По словам Зыбина, на высокогорной станции ФИАНа на Тянь-Шане проводятся эксперименты по изучению молний в "естественной среде".

"Там расставлены счетчики и измеряется гамма-излучение, причем отсчеты идут через очень короткие промежутки времени. Можно сказать однозначно, в отсутствие грозы никаких сигналов нет, когда же начинается гроза, начинаются сильные вспышки, гамма-всплески, они коррелируют с радиоимпульсами, которые вызваны грозовыми процессами", - сказал ученый.

Он отметил, что изучение механизмов образования молний позволит понять обнаруженные в последнее время явления, в частности, гигантские высотные разряды между грозовыми облаками и ионосферой ("спрайт").

По мнению ученых ФИАНа, эти исследования дают новые возможности и в анализе климатических изменений, и в механизмах воздействия на атмосферу.

Грозовые разряды (молнии ) - это наиболее распространенный источник мощных электромагнитных полей естественного происхождения. Молния представляет собой разновидность газового разряда при очень большой длине искры. Общая длина канала молнии достигает нескольких километров, причем значительная часть этого канала находится внутри грозового облака. молнии Причиной возникновения молний является образование большого объемного электрического заряда.

Обычным источником молний являются грозовые кучево-дождевые облака, несущие в себе скопление положительных и отрицательных электрических зарядов в верхней и нижней частях облака и образующие вокруг этого облака электрические поля возрастающей напряженности. Образование таких объемных зарядов различной полярности в облаке (поляризация облака) связано с конденсацией вследствие охлаждения водяных паров восходящих потоков теплого воздуха на положительных и отрицательных ионах (центрах конденсации) и разделением заряженных капелек влаги в облаке под действием интенсивных восходящих тепловых воздушных потоков. Из-за того, что в облаке образуется несколько изолированных друг от друга скоплений зарядов (в нижней части облака скапливаются преимущественно заряды отрицательной полярности).

Грозовые разряды по внешним признакам могут быть разделены на несколько типов. Обычный тип - линейная молния , с разновидностями: ленточная, ракетообразная, зигзагообразная и разветвленная. Наиболее редкий тип разрядов - шаровая молния. Известны разряды, носящие названия "Огни святого Эльма" и "Свечение Анд". Молния обычно бывает многократной, т.е. состоит из нескольких единичных разрядов, развивающихся по одному и тому же пути, причем каждый разряд, так же как и разряд, получаемый в лабораторных условиях, начинается лидерным и завершается обратным (главным) разрядом. Скорость опускания лидера первого единичного разряда примерно равна 1500 км/с, скорости лидеров последующих разрядов достигают 2000 км/с, а скорость обратного разряда изменяется в пределах 15000 -150000 км/с, т. е. от 0,05 до 0,5 скорости света. Канал лидера, как и канал всякого стримера, заполнен плазмой, следовательно, обладает определенной проводимостью.

Верхним концом лидерный канал соединен с одним из заряженных центров в облаке, поэтому часть зарядов этого центра стекает в канал лидера. Распределение заряда в канале должно быть неравномерным, возрастая к его концу. Однако некоторые косвенные измерения позволяют предположить, что абсолютная величина заряда на головке лидера невелика и в первом приближении канал можно считать равномерно заряженным с линейной плотностью зарядов S. Общий заряд в канале лидера в этом случае равен Q = S*l, где l - длина канала, причем обычно значение его составляет около 10% значения заряда, стекающего в землю во время единичного разряда молнии. В 70-80% всех случаев этот заряд имеет отрицательную полярность. По мере продвижения канала лидера под действием создаваемого им электрического поля в земле происходит смещение зарядов, причем заряды, противоположные по знаку зарядам лидера (обычно это положительные заряды), стремятся расположиться как можно ближе к головке лидерного канала. В случае однородного грунта эти заряды скапливаются непосредственно под лидерным каналом.

Если грунт неоднородный и основная его часть обладает большим удельным сопротивлением, заряды сосредоточиваются в участках с повышенной проводимостью (реки, грунтовые воды). При наличии заземленных возвышающихся объектов (молниеотводы, дымовые трубы, высокие здания, смоченные дождем деревья) заряды стягиваются к вершине объекта, создавая там значительную напряженность поля. На первых стадиях развития лидерного канала напряженность электрического поля на его головке определяется собственными зарядами лидера и находящимися под облаком скоплениями объемных зарядов. Траектория движения лидера не связана с земными объектами. По мере опускания лидера все большее влияние начинают оказывать скопления зарядов на земле и возвышающихся объектах. Начиная с определенной высоты головки лидера (высота ориентировки), напряженность поля по одному из направлений оказывается наибольшей, и происходит ориентирование лидера на один из наземных объектов. Естественно, что при этом преимущественно поражаются возвышающиеся объекты и участки земли с повышенной проводимостью (избирательная поражаемость). С очень высоких объектов навстречу лидеру развиваются встречные лидеры, наличие которых способствует ориентированию молнии на данный объект.

После того, как канал лидера достигнет земли или встречного лидера, начинается обратный разряд, во время которого канал лидера приобретает потенциал, практически равный потенциалу земли. На головке развивающегося вверх обратного разряда имеется область повышенной напряженности электрического поля, под действием которой происходит перестройка канала, сопровождающаяся увеличением плотности зарядов плазмы от 10^13 - 10^14 до 10^16 - 10^19 1/м3, благодаря чему проводимость канала увеличивается по крайней мере в 100 раз. Во время развития обратного разряда через место удара проходит ток iM = v, где v - скорость обратного разряда. Процесс, происходящий при переходе лидерного разряда в обратный разряд, во многом аналогичен процессу замыкания на землю вертикального заряженного провода.

Если заряженный провод замыкается на землю через сопротивление r, то ток в месте заземления равен: где z = волновое сопротивление провода. Таким образом, и при разряде молнии ток в месте удара будет равен v только при сопротивлении заземления, равном нулю. При сопротивлениях заземления, отличных от нуля, ток в месте удара уменьшается. Количественно определить это уменьшение довольно трудно, так как волновое сопротивление канала молнии можно оценить лишь грубо приближенно. Имеются основания предполагать, что волновое сопротивление канала молнии уменьшается при увеличении тока, причем среднее значение примерно равно 200 - 300 Ом. В таком случае при изменении сопротивления заземления объекта от 0 до 30 Ом ток в объекте изменяется всего на 10%. Такие объекты в дальнейшем мы будем называть хорошо заземленными и считать, что через них проходит полный ток молнии iM = v. Основные параметры молнии и интенсивность грозовой деятельности Молнии с большими токами возникают крайне редко. Так, молнии с токами 200 кА возникают в 0,7...1,0% случаев от общего числа наблюдавшихся разрядов.

Число случаев ударов молний с величиной тока 20 кА составляет порядка 50%. Поэтому принято значения амплитуд токов молний представлять в виде кривых вероятностей (функций распределения), для которых по оси ординат откладывается вероятность появления токов молнии с максимальным значением. Основной количественной характеристикой молнии является ток, протекающий через пораженный объект, который характеризуется максимальным значением iM, средней крутизной фронта и длительностью импульса tи, которая равна времени уменьшения тока до половины максимального значения. В настоящее время наибольшее количество данных имеется по максимальным значениям тока молнии, измерение которой осуществляется простейшими измерительными приборами - магниторегистраторами, которые представляют собой цилиндрические стерженьки, изготовленные из стальных опилок или проволочек, запрессованных в пластмассу. Магниторегистраторы укрепляются вблизи возвышающихся объектов (молниеотводы, опоры линий передач) и располагаются вдоль силовых линий магнитного поля, которое возникает при прохождении тока молнии через объект. Так как для изготовления регистраторов применяются материалы, обладающие большой коэрцитивной силой, они сохраняют большую остаточную намагниченность.

Измеряя эту намагниченность, можно с помощью градуировочных кривых определить максимальное значение на магничивающего тока. Измерения магниторегистраторами не обеспечивают большой точности, однако этот недостаток частично компенсируется огромным количеством измерений, которые к настоящему времени исчисляются десятками тысяч. Располагая вблизи от поражаемого объекта рамку, замкнутую на индуктивную катушку, можно измерить крутизну тока молнии с помощью магниторегистратора, помещенного внутри катушки. Измерения показали, что токи молнии изменяются в широких пределах от нескольких килоампер до сотен килоампер, поэтому результаты измерения представляются в виде кривых вероятностей (функций распределения) токов молнии, на которых по оси абсцисс откладывается вероятность появления токов молнии с максимальным значением, превышающим значение, указываемое ординатой.

В Украине при расчетах грозозащиты используется кривая Для горных местностей ординаты кривой уменьшаются в 2 раза, так как при малых расстояниях от земли до облаков молния возникает при меньшей плотности зарядов в скоплениях, т. е. вероятность больших токов уменьшается. Значительно большие трудности представляет экспериментальное определение крутизны и длительности импульса тока молнии, поэтому количество экспериментальных данных по этим параметрам относительно невелико. Длительность импульса тока молнии в основном определяется временем распространения обратного разряда от земли до облака и в связи с этим изменяется в относительно узких пределах от 20 до 80-100 мкс. Средняя длительность импульса тока молнии близка к 50 мкс, что и определило выбор стандартного импульса.

Наиболее важными с точки зрения оценок грозовой стойкости РЭС являются: величина переносимого молнией заряда, ток в канале молнии, число повторных ударов по одному каналу и интенсивность грозовой деятельности. Все эти параметры определяются не однозначно и носят вероятностный характер. Заряд, переносимый молнией, колеблется в процессе разряда в пределах от долей кулона до нескольких десятков кулон. Средний заряд, опускаемый в землю многократной молнией, равен 15 - 25 Кл. Учитывая, что в среднем разряд молнии содержит три компоненты, следовательно, во время одной компоненты в землю переносится около 5 - 8 Кл. Из них в канал лидера стекает около 60% всего данного скопления зарядов, что составляет 3 - 5 Кл. Удар молнии в равнинные участки поверхности земли несет заряд 10 - 50 Кл (в среднем 25 Кл), при ударах молнии в горах - заряд 30 - 100 Кл (в среднем 60 Кл), при разрядах в телевизионные башни заряд достигает 160 Кл.

При разрядах молнии в землю в подавляющем большинстве (85 - 90%) в землю переносится отрицательный заряд. Заряд, стекающий в землю во время многократной молнии, изменяется в пределах от долей кулона до 100 Кл и более. Среднее значение этого заряда близко к 20 Кл. Заряд, спускаемый в землю во время гроз, по-видимому, играет существенную роль в поддержании отрицательного заряда земли. Интенсивность грозовой деятельности в различных климатических районах различается очень сильно. Как правило, количество гроз в течение года минимально в северных районах и постепенно увеличивается к югу, где повышенная влажность воздуха и высокая температура способствуют образованию грозовых облаков. Однако эта тенденция соблюдается не всегда. Существуют очаги грозовой деятельности и в средних широтах (например, в районе Киева), где создаются благоприятные условия для формирования местных гроз.

Интенсивность грозовой деятельности принято характеризовать числом грозовых дней в году или общей годовой продолжительностью гроз в часах. Последняя характеристика более правильна, так как число ударов молнии в землю зависит не от числа гроз, а от их общей продолжительности. Число грозовых дней или часов в году определяется на основании многолетних наблюдений метеорологических станций, обобщение которых позволяет составить карты грозовой деятельности, на которые наносятся линии равной продолжительности гроз - изокеранические линии. Средняя продолжительность гроз за один грозовой день для территории европейской части России и Украины 1,5-2 ч.

Российские физики вплотную приблизились к разгадке механизма возникновения молний при грозе. Предположение о том, как это может происходить высказал еще в 1992 году отечественный ученый Александр Гуревич. Но только недавно появилась возможность для экспериментальной проверки его гипотезы. Сейчас изучается самая первая стадия формирования молнии.

Так в лаборатории проблем новых ускорителей ФИАН заработала экспериментальная установка, позволяющая исследовать процессы образования длинной искры в воздухе — наиболее близкого аналога хорошо известной молнии, возникающей во время грозы. Эксперименты на новой установке проводятся в соответствии с положениями "Теории пробоя на убегающих электронах", разрабатываемой академиком Александром Гуревичем.

Несмотря на то что молния не является редким явлением (ее видели, наверное, все жители нашей планеты хотя бы один раз в жизни), до сих пор механизм возникновения этого грозного и красивого явления природы практически не изучен.

Более того, те знания, которыми обладают ученые, говорят о том, что во время грозы молния не может возникнуть, поскольку, согласно имеющимся данным, электрические поля вблизи грозовых облаков существенно меньше, чем необходимо для возникновения электрических разрядов. Однако они, тем не менее, возникают, и иногда даже по несколько штук за минуту.

Еще в 1992 году, пытаясь как-то решить данный парадокс, отечественный физик Александр Гуревич сформулировал так называемую "Теорию пробоя на убегающих электронах". Вкратце суть ее такова.

Многочисленные наблюдения и расчеты показали, что в воздухе большинство электронов имеют среднюю длину свободного пробега (то есть расстояние, которое частица преодолевает между двумя столкновениями с окружающими молекулами, атомами и частицами) около одного сантиметра.

Однако там имеются так называемые быстрые электроны, которые двигаются со скоростью, близкой к скорости света. Соответственно, они имеют длину свободного пробега в 100 раз больше, то есть около метра.

Гуревич предположил, что если эти быстрые электроны (их-то и называют убегающими), несясь на огромной скорости, столкнутся с молекулами воздуха, то в результате из последних будет высвобождено еще несколько таких же быстрых электронов. Таким образом, несколько "первопроходцев" стимулируют появление орды вторичных убегающих электронов. Они, в свою очередь, также ускоряются полем.

В результате появляется экспоненциально нарастающая лавина убегающих электронов, вместе с которыми растет и число медленных (тепловых) электронов. Они также вышибаются в результате столкновений быстрых электронов с молекулами. Данная ситуация напоминает падение линии, составленной из костяшек для игры в домино, разница лишь в том, что в данном случае некоторые фишки падают медленно и не задевают другие, а некоторые — быстро, роняя своих соседей.

Предполагается, что все это должно приводить к быстрому росту электропроводности среды (которая, как мы знаем, растет вместе с увеличением концентрации свободных носителей заряда). В результате возникает явление, которое физики называют "электрический пробой".

Кстати, подобное явление знакомо каждому автолюбителю — именно наличие такого пробоя бензовоздушной смеси на свече в двигателе внутреннего сгорания позволяет завести двигатель (в этой ситуации его обычно называют "искра"). Во время пробоя носитель заряда на длине свободного пробега приобретает энергию, достаточную для ионизации молекул кристаллической решетки или газа.

Данная ионизация происходит, когда частицы вырывают у них электроны, без которых молекулы превращаются в положительно заряженные ионы. Вырванные же электроны, в свою очередь, тоже становятся свободными носителями заряда, которые вносят основной вклад в общий ток.

Впрочем, сам пробой — это еще не молния. Однако в результате этого явления образуется многокилометровый слой проводящей плазмы. А вот она уже способна создать тот самый грозовой разряд, который мы называем молнией.

Проведенные Гуревичем расчеты показали, что в атмосфере пробой может происходить при напряженности электрического поля, значительно меньшей, чем та, которая необходима для обычного пробоя (вроде того, что происходит на свечах автомобиля).

Так при давлении одна атмосфера пороговое поле для обычного пробоя составляет 23 кВ/см, а для пробоя на убегающих электронах — 2,16 кВ/см. Получается, что убегающие электроны вполне могут создать все условия, необходимые для возникновения этого явления.

Но откуда берутся самые первые убегающие электроны? Ученый предположил, что они появляются под действием космического излучения. В верхних слоях атмосферы оно ионизирует молекулы воздуха, высвобождая небольшое количество убегающих электронов, которые, попадая в область грозы, и вызывают пробой.

Кстати, при этом должны возникать мощные вспышки рентгеновского излучения. И, как показали данные, полученные при экспериментах, проводившихся на самолетах и шарах-зондах, подобное действительно имеет место быть (первую такую вспышку при грозе зафиксировали еще в 1960 году, однако тогда никто не смог объяснить, откуда она взялась).

Серия полевых экспериментов, проведенная в конце прошлого — начале нынешнего столетия на Тянь-Шаньской высокогорной научной станции ФИАН, вроде бы, подтвердила данную теорию. Однако теперь появилась возможность изучить этот механизм в лабораторных условиях.

Правда, ученые сразу же заявили, что искусственную молнию пока никто создавать не собирается. "Наша задача — смоделировать не молнию, так как это многостадийный процесс, а ее начальный, то есть предпробойный этап", — говорит старший научный сотрудник лаборатории проблем новых ускорителей ФИАН, кандидат физико-математических наук Александр Огинов. Однако и это представляется весьма интересным для ученых.

Экспериментальная установка для моделирования аналога высотного атмосферного разряда создана сотрудниками Физического института РАН и Института сильноточной электроники СО РАН (Томск) на базе электронного релятивистского генератора, включающего в себя генератор импульсных напряжений.

С ее помощью можно обнаружить наличие в воздухе убегающих электронов. Ученые же исследуют их поведение, выясняют основные характеристики и наблюдают их воздействие на молекулы окружающего воздуха.

"Сейчас идет этап накопления экспериментальных данных, но уже получено много новых интересных результатов. В планах — получить не статистический, а динамический эффект, то есть не ждать появления "затравочного" электрона, а научиться создавать его.

И тогда, инжектируя затравочный пучок электронов, надеюсь, мы однозначно обнаружим усиление. И тем самым подтвердим возможность осуществления пробоя на убегающих электронах в соответствии с выводами теории", — комментирует результаты экспериментов Александр Огинов.

В 1992 году российский физик Александр Гуревич из Физического института им. П. Н. Лебедева РАН предположил, что молнии вызываются космическими лучами, которые попадают в атмосферу Земли.


Нет, конечно, все мы слышали о гипотезе Бенджамина Франклина, согласно которой молния — это разряд, возникающий между облаками и поверхностью Земли просто из-за разницы в их зарядах. В этой концепции, однако, есть довольно уязвимое место. Для возникновения разряда необходимо, чтобы между облаками и поверхностью (или соседними облаками) была слишком уж большая разница по зарядам. Как выяснилось из информации, полученной метеозондами в 1990-х, на практике наблюдается не более одной десятой такой разницы. Тем не менее молнии, похоже, всё же случаются. Так за счёт чего?

Александр Гуревич и Ко полагают, что высокоэнергетические частицы в атмосфере запускают процесс, названный пробой на убегающих электронах (ПУЭ). А «спусковым крючком» ПУЭ служат космические лучи. Эти потоки заряженных частиц, в основном протонов, порождаемые далёкими вспышками сверхновых (и другими процессами), попадая в атмосферу и сталкиваясь с ядрами атомов воздуха, вызывают лавинообразный процесс образования свободных электронов со значительной энергией (широкие атмосферные ливни).

Электрические поля в грозовых облаках разгоняют электроны до околосветовых скоростей. Дальнейшие столкновения электронов с атомами воздуха рождают дополнительные свободные электроны, а также рентгеновское и гамма-излучение («тёмные молнии», о которых «КЛ» не устаёт писать), переходящие в нити электрических разрядов — стримеры, хорошо проводящие каналы, при слиянии которых возникает термоионизованный канал с высокой проводимостью (он же ступенчатый лидер молнии).

В теории всё выглядит очень стройно: ПУЭ появляется в атмосфере в постоянном электрическом поле, на порядок меньшем поля обычного пробоя, то есть при наличии космических лучей наблюдаемых атмосферных электрических полей наконец-то достаточно, чтобы объяснить феномен как тёмной молнии, так и её видимого аналога.

Но вплоть до самого последнего времени всё это оставалось лишь теорией: не было конкретных свидетельств того, что именно космические лучи ответственны за начало пробоя на убегающих электронах.

Увы, воспроизвести такие процессы в лаборатории оказалось довольно трудно, и дело не только в том, что для этого нужно напряжение в 10 млн вольт. Давно известно, что космические лучи, входя в земную атмосферу, генерируют радиоимпульсы, и во время гроз радиоимпульсов со сходными параметрами больше, чем когда гроз нет.

Чтобы сверить гипотезу с наблюдениями, Александр Гуревич и Анатолий Караштин из Научно-исследовательского радиофизического института (Нижний Новгород) проанализировали данные от радиоинтерферометров, снятые при 3 800 ударах молний над Россией и Казахстаном. Поскольку радиоинтерферометры позволяют привязать зарегистрированные ими радиоволны к конкретным направлениям, учёным удалось недвусмысленно соотнести сотни и даже тысячи коротких и сильных радиоимпульсов с моментами, прямо предшествовавшими ударам молний. Более того, оказалось, что конкретные параметры радиоимпульсов совпадают с теоретически предсказанными особенностями их генерации космическими лучами.

Так что же, выходит, наблюдения всё объяснили? На самом деле, хотя и подтвердилось, что космические лучи играют роль «затравки» для тёмных и сопровождающих их обычных молний, осталась важная неясность. Над Россией и Казахстаном просто нет такого количества космических лучей необходимых энергий, чтобы породить наблюдаемый «обвал» молний.

Чтобы объяснить это «несоответствие», физики проанализировали характер возможного взаимодействия зафиксированных радиоинтерферометрами волн с каплями воды и градинами (гидрометеорами). Выяснилось, что, когда электроны низких энергий, сопутствующие свободным электронам высоких энергий, проходят мимо капель и градин в атмосфере, запускается ряд микроразрядов, радикально усиливающих как электрическое поле в районе возникновения будущей молнии, так и радиоимпульс, позднее регистрировавшийся приборами.

Вверху: частота попаданий космических лучей в атмосферу Земли. Внизу: частота ударов молний на единицу площади. Хорошо видно, что одних космических лучей мало для генерации молний: им нужно взаимодействие с каплями воды.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием