Случайные величины. Случайная величина Множество возможных значений случайной величины

Учреждение образования «Белорусская государственная

сельскохозяйственная академия»

Кафедра высшей математики

Методические указания

по изучению темы «Случайные величины» студентами бухгалтерского факультета заочной формы получения образования (НИСПО)

Горки, 2013

Случайные величины

    Дискретные и непрерывные случайные величины

Одним из основных понятий в теории вероятностей является понятие случайной величины . Случайной величиной называется величина, которая в результате испытания из множества возможных своих значений принимает только одно, причём заранее неизвестно, какое именно.

Случайные величины бывают дискретными и непрерывными . Дискретной случайной величиной (ДСВ) называется случайная величина, которая может принимать конечное число изолированных друг о друга значений, т.е. если возможные значения этой величины можно пересчитать. Непрерывной случайной величиной (НСВ) называется случайная величина, все возможные значения которой сплошь заполняют некоторый промежуток числовой прямой.

Случайные величины обозначаются заглавными буквами латинского алфавита X, Y, Z и т.д. Возможные значения случайных величин обозначаются соответствующими малыми буквами.

Запись
означает «вероятность того, что случайная величина Х примет значение, равное 5, равна 0.28».

Пример 1 . Один раз бросают игральный кубик. При этом могут выпасть цифры от 1 до 6, обозначающие число очков. Обозначим случайную величину Х ={число выпавших очков}. Эта случайная величина в результате испытания может принять только одно из шести значений: 1, 2, 3, 4, 5 или 6. Следовательно, случайная величина Х есть ДСВ.

Пример 2 . При бросании камня он пролетает некоторое расстояние. Обозначим случайную величину X ={расстояние полёта камня}. Эта случайная величина может принять любое, но только одно, значение из некоторого промежутка. Следовательно, случайная величина Х есть НСВ.

    Закон распределения дискретной случайной величины

Дискретная случайная величина характеризуется значениями, которые она может принимать, и вероятностями, с которыми эти значения принимаются. Соответствие между возможными значениями дискретной случайной величины и соответствующими им вероятностями называется законом распределения дискретной случайной величины .

Если известны все возможные значения
случайной величины Х и вероятности
появления этих значений, то считают, что закон распределения ДСВ Х известен и он может быть записан в виде таблицы:

Закон распределения ДСВ можно изобразить графически, если в прямоугольной системе координат изобразить точки
,
, …,
и соединить их отрезками прямых линий. Полученная фигура называется многоугольником распределения.

Пример 3 . В зерне, предназначенном для очистки, содержится 10% сорняков. Наугад отобраны 4 зерна. Обозначим случайную величину X ={число сорняков среди четырёх отобранных}. Построить закон распределения ДСВ Х и многоугольник распределения.

Решение . По условию примера . Тогда:

Запишем закон распределения ДСВ Х в виде таблицы и построим многоугольник распределения:

    Математическое ожидание дискретной случайной величины

Наиболее важные свойства дискретной случайной величины описываются её характеристиками. Одной из таких характеристик является математическое ожидание случайной величины.

Пусть известен закон распределения ДСВ Х :

Математическим ожиданием ДСВ Х называется сумма произведений каждого значения этой величины на соответствующую вероятность:
.

Математическое ожидание случайной величины приближённо равно среднему арифметическому всех её значений. Поэтому в практических задачах часто за математическое ожидание принимают среднее значение этой случайной величины.

Пример 8 . Стрелок выбивает 4, 8, 9 и 10 очков с вероятностями 0.1, 0.45, 0.3 и 0.15. Найти математическое ожидание числа очков при одном выстреле.

Решение . Обозначим случайную величину X ={число выбитых очков}. Тогда . Таким образом, ожидаемое среднее значение числа выбитых очков при одном выстреле равно 8.2, а при 10 выстрелах – 82.

Основными свойствами математического ожидания являются:


.


.


, где
,
.

.

, где Х и Y

Разность
называется отклонением случайной величины Х от её математического ожидания. Эта разность является случайной величиной и её математическое ожидание равно нулю, т.е.
.

    Дисперсия дискретной случайной величины

Для характеристики случайной величины, кроме математического ожидания, используется и дисперсия , которая даёт возможность оценить рассеяние (разброс) значений случайной величины около её математического ожидания. При сравнении двух однородных случайных величин с равными математическими ожиданиями «лучшей» считается та величина, которая имеет меньший разброс, т.е. меньшую дисперсию.

Дисперсией случайной величины Х называется математическое ожидание квадрата отклонения случайной величины от её математического ожидания: .

В практических задачах для вычисления дисперсии используют равносильную формулу .

Основными свойствами дисперсии являются:


.


.

, где Х и Y – независимые случайные величины.

Дисперсия характеризует разброс случайной величины около её математического ожидания и, как видно из формулы, измеряется в квадратных единицах по сравнению с единицами самой случайной величины. Поэтому для согласования единиц измерения разброса случайной величины с единицами измерения самой величины вводится среднее квадратическое отклонение
.

Пример 9 . Найти дисперсию и среднее квадратическое отклонение ДСВ Х , заданной законом распределения:

Решение . Дисперсия ДСВ Х вычисляется по формуле

Найдём математическое ожидание данной случайной величины: . Запишем закон распределения для случайной величины
:

,
.

Вопросы для самоконтроля знаний

    Что называется случайной величиной?

    Какая случайная величина называется дискретной, а какая – непрерывной?

    Что называется законом распределения дискретной случайной величины?

    Что называется математическим ожиданием дискретной случайной величины и каковы его основные свойства?

    Что называется отклонением случайной величины от её математического ожидания?

    Что называется дисперсией дискретной случайной величины и каковы её основные свойства?

    Для чего вводится среднее квадратическое отклонение и как оно вычисляется?

Задания для самостоятельной работы


Пусть непрерывная случайная величина Х задана функцией распределения F (X ) . Допустим, что все возможные значения случайной величины принадлежат отрезку [A , B ].

Определение. Математическим ожиданием непрерывной случайной величины Х, возможные значения которой принадлежат отрезку , называется определенный интеграл

Если возможные значения случайной величины рассматриваются на всей числовой оси, то математическое ожидание находится по формуле:

При этом, конечно, предполагается, что несобственный интеграл сходится.

Определение. Дисперсией непрерывной случайной величины называется математическое ожидание квадрата ее отклонения.

По аналогии с дисперсией дискретной случайной величины, для практического вычисления дисперсии используется формула:

Определение. Средним квадратичным отклонением Называется квадратный корень из дисперсии.

Определение. Модой М0 дискретной случайной величины называется ее наиболее вероятное значение. Для непрерывной случайной величины мода – такое значение случайной величины, при которой плотность распределения имеет максимум.

Если многоугольник распределения для дискретной случайной величины или кривая распределения для непрерывной случайной величины имеет два или несколько максимумов, то такое распределение называется Двухмодальным или Многомодальным .

Если распределение имеет минимум, но не имеет максимума, то оно называется Антимодальным .

Определение. Медианой MD случайной величины Х называется такое ее значение, относительно которого равновероятно получение большего или меньшего значения случайной величины.

Геометрически медиана – абсцисса точки, в которой площадь, ограниченная кривой распределения делится пополам.

Отметим, что если распределение одномодальное, то мода и медиана совпадают с математическим ожиданием.

Определение. Начальным моментом Порядка K Случайной величины Х называется математическое ожидание величины ХK .

Для дискретной случайной величины: .

.

Начальный момент первого порядка равен математическому ожиданию.

Определение. Центральным моментом Порядка K случайной величины Х называется математическое ожидание величины

Для дискретной случайной величины: .

Для непрерывной случайной величины: .

Центральный момент первого порядка всегда равен нулю, а центральный момент второго порядка равен дисперсии. Центральный момент третьего порядка характеризует асимметрию распределения.

Определение. Отношение центрального момента третьего порядка к среднему квадратическому отклонению в третьей степени называется Коэффициентом асимметрии .

Определение. Для характеристики островершинности и плосковершинности распределения используется величина, называемая Эксцессом .

Кроме рассмотренных величин используются также так называемые абсолютные моменты:

Абсолютный начальный момент: .

Абсолютный централь Ный момент: .

Абсолютный центральный момент первого порядка называется Средним арифметическим отклонением .

Пример. Для рассмо Ренного выше примера определить математическое ожидание и дисперсию случайной величины Х.

Пример. В урне 6 белых и 4 черных шара. Из нее пять раз подряд извлекают шар, причем каждый раз вынутый шар возвращают обратно и шары перемешивают. Приняв за случайную величину Х число извлеченных белых шаров, составить закон распределения этой величины, определить ее математическое ожидание и дисперсию.

Т. к. шары в каждом опыте возвращаются обратно и перемешиваются, то испытания можно считать независимыми (результат предыдущего опыта не влияет на вероятность появления или непоявления события в другом опыте).

Таким образом, вероятность появления белого шара в каждом опыте постоянна и равна

Таким образом, в результате пяти последовательных испытаний белый шар может не появиться вовсе, появиться один раз, два, три, четыре или пять раз.

Для составления закона распределения надо найти вероятности каждого из этих событий.

1) Белый шар не появился вовсе:

2) Белый шар появился один раз:

3) Белый шар появиться два раза: .

4) Белый шар появиться три раза:

В ситуации риска нам известны исходы той или иной альтернативы и вероятности, с которыми данные исходы могут наступить. То есть нам известно вероятностное распределение исходов, поэтому они могут быть представлены (смоделированы) в виде случайной величины . В этом параграфе мы напомним сведения из теории вероятностей о случайных величинах и способах их определения, которые будут необходимы для дальнейшего изучения материала книги.

Согласно классическому определению, случайной называется величина, значение которой может меняться от опыта к опыту случайным образом. То есть в каждом "испытании" она может принимать одно единственное значение из некоторого множества. При этом нельзя предсказать, какое именно значение она примет.

Случайные величины делятся на дискретные и непрерывные. Дискретная СВ может принимать только конечное или счетное множество значений. Непрерывная СВ может принимать любое значение из некоторого замкнутого или открытого интервала, в том числе и бесконечного.

3.2.2. Закон распределения случайной величины

Случайная величина определяется своим законом распределения. Закон распределения считается заданным, если указаны:

  • множество возможных значений случайной величины (в т.ч. бесконечное) и
  • вероятность попадания случайной величины в произвольную область этого множества, либо закон (формула), позволяющая рассчитать такую вероятность.

По сути, вероятность представляет собой показатель, характеризующий возможность появления случайной величины в данной области.

Наиболее общим и распространенным способом определения вероятностей различных значений случайной величины является задание функции распределения вероятностей , которую сокращенно называют функцией распределения .

Функцией распределения случайной величины Х называется функция F(x) , задающая вероятность того, что СВ примет значение меньше конкретного значения х , то есть:

F(x) = P(X < x)

Х ("икс большое") - обозначает случайную величину,

х ("икс маленькое") - конкретное значение из множества возможных значений случайной величины.

Функция распределения неубывающая. При х , стремящемся к минус бесконечности, она стремится к нулю, а при х , стремящемся к плюс бесконечности - к единице.

Форма представления закона распределения случайной величины может быть различна и зависит от того, какая это СВ - дискретная или непрерывная.

Из определения функции распределения следуют следующие зависимости:

вероятность того, что случайная величина примет значения в интервале от а до b :

Р(a ≤ Х < b) = F(b) - F(a)

вероятность того, что случайная величина примет значения не меньше, чем а :

3.2.3. Способы представления распределения дискретной случайной величины

Дискретная случайная величина может быть полностью задана своей функцией распределения или рядом (таблицей) распределения. Они могут быть представлены в табличной, аналитической или графической формах.

Допустим, случайная величина Х может принять три возможных значения 25 , 45 и 50 с вероятностями 25% , 35% и 40% соответственно. Ряд распределения этой СВ будет выглядеть следующим образом:

Функция распределения этой же случайной величины, которая показывает вероятность непревышения конкретного значения, может быть записана так:

На рис.3.1 представлены графические способы задания закона распределения этой дискретной случайной величины Х .

Рис.3.1.

На графике ряда распределения вероятности p j реализации каждого возможного значения х j представлены столбиками, высота которых равна вероятности. Сумма высот всех М столбиков (т.е. всех вероятностей) равна единице, поскольку они охватывают все возможные значения х :

Иногда вместо столбиков изображают ломанную, соединяющую вероятности реализации значений СВ.

Вероятность того, что дискретная случайная величина примет значение меньше, чем а , равна сумме вероятностей всех исходов, меньших а :

По определению, это равно значению функции распределения в точке х = а . Если мы нанесем на координатную плоскость значения функции распределения, когда х "пробегает" все значения от минус бесконечности до плюс бесконечности, мы получим график функции распределения. Для дискретной СВ он ступенчатый. На интервале от минус бесконечности до первого возможного значения х 1 она равна нулю, поскольку принять какое-либо значение на этом интервале невозможно.

Далее каждое возможное значение х j увеличивает функцию распределения на величину, равную вероятности наступления этого значения p j . Между двумя последовательными значениями х j и x j+1 функция распределения не изменяется, поскольку других возможных значений х там нет, и скачков не происходит. В конечном итоге, в точке последнего возможного значения х М происходит скачок на величину вероятности р М , и функция распределения достигает предельного значения, равного единице. Далее график идет на этом уровне параллельно оси х . Выше он никогда не поднимается, так как вероятность не может быть больше единицы.

3.2.4. Способы представления распределения непрерывной случайной величины

Непрерывная случайная величина также задается своей функцией распределения, представленной, как правило, в аналитическом виде. Кроме того, она может быть полностью описана функцией плотности вероятности f(x) , которая представляет собой первую производную от функции распределения F(x) :

Функция плотности вероятности неотрицательна, а ее интеграл в бесконечных пределах равен единице.

Возьмем в качестве примера непрерывную случайную величину, распределенную по нормальному закону.

Ее функция плотности вероятности задается аналитически формулой вида:

Здесь m X и σ X параметры распределения. m X характеризует местоположение центра распределения, а σ X - рассеивание относительно этого "центра".

СЛУЧАЙНЫЕ ВЕЛИЧИНЫ

Одним из важнейших понятий теории вероятности (наряду со случайным событием и вероятностью) является понятие случайной величины.

Определение. Под случайной величиной понимаю величину, которая в результате опыта принимает то или иное значение, причем неизвестно заранее, какое именно.

Cлучайные величины (сокращенно с.в.) обозначаются прописными латинскими буквами X, Y, Z ,… (или строчными греческими буквами x (кси), h(эта), q (тэта), y(пси) и т.д.), а их возможные значения – соответствующими строчными буквами х , у , z .

Примерами с.в. могут служить: 1) число родившихся мальчиков среди ста новорожденных есть случайная величина, которая имеет следующие возможные значения: 0, 1, 2, ..., 100;

2) расстояние, которое пролетит снаряд при выстреле из орудия, есть случайная величина. Действительно, расстояние зависит не только от установки прицела, но и от многих других причин (силы и направления ветра, температуры и т.д.), которые не могут быть полностью учтены. Возможные значения этой величины принадлежат некоторому промежутку (а , b ).

3) Х – число очков, появляющихся при бросании игральной кости;

4) Y – число выстрелов до первого попадания в цель;

5) Z – время безотказной работы прибора и т.п. (рост человека, курс доллара, количество бракованных деталей в партии, температура воздуха, выигрыши игрока, координата точки при случайном выборе ее на , прибыль фирмы, …).

В первом примере случайная величина X могла принять одно из следующих возможных значений: 0, 1, 2, . . ., 100. Эти значения отделены одно от другого промежутками, в которых нет возможных значений X . Таким образом, в этом примере случайная величина принимает отдельные, изолированные возможные значения. Во втором примере случайная величина могла принять любое из значений промежутка (а , b ). Здесь нельзя отделить одно возможное значение от другого промежутком, не содержащим возможных значений случайной величины.

Уже из сказанного можно заключить о целесообразности различать случайные величины, принимающие лишь отдельные, изолированные значения, и случайные величины, возможные значения которых сплошь заполняют некоторый промежуток.

Определение. Дискретной (прерывной) называют случайную величину (сокращено д.с.в.), которая принимает отдельные, счетные возможные значения с определенными вероятностями. Число возможных значений дискретной случайной величины может быть конечным или бесконечным.

Определение. Если же множество возможных значений с.в. несчетно, то такая величина называется непрерывной (сокращенно н.с.в.). Непрерывная случайная величина может принимать все значения из некоторого конечного или бесконечного промежутка. Очевидно, число возможных значений непрерывной случайной величины бесконечно.



Случайные величины X и Y (примеры 3 и 4) являются дискретными. С.в. Z (пример 5) является непрерывной: ее возможные значения принадлежат промежутку }

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием