Спирты строение классификация физические и химические свойства. Органическая химия

Спирты – это производные углеводородов, в молекулах которых содержится одна или несколько гидроксильных ОН – групп, связанных с насыщенным атомом углерода.

Номенклатура: систематическая – к названию соответствующего углеводорода добавляют окончание – ол, цифрой указывают положение ОН-группы; применяют тривиальные названия.

КЛАССИФИКАЦИЯ

По числу ОН – групп спирты делятся на

● одноатомные

● двухатомные (диолы)

● трехатомные (триолы)

● многоатомные (полиолы)

В зависимости от положения ОН-групп различают

● первичные

● вторичные

● третичные

В зависимости от природы радикала R различают

● насыщенные

● ненасыщенные

● ароматические

● алициклические

Изомерия

1. Углеродного скелета

2. Положение функциональной группы:

3. Межклассовая изомерия (спирты изомерны классу простых эфиров)

§3. Способы получения одноатомных спиртов .

1. Гидратация алкенов

В зависимости от строения непредельного углеводорода могут образовываться первичные, вторичные и третичные спирты:

этилен этанол

пропилен 2-пропанол

метилпропен 2-метил-2-пропанол

2. Гидролиз галогенпроизводных; осуществляется под действием водного р-ра щелочи:

3. Гидролиз сложных эфиров:

4. Восстановление карбонильных соединений:

5. Некоторые специфические методы получения:

а) получение метанола из синтез-газа (давление – 50 – 150атм, температура – 200 - 300°С, катализаторы – оксиды цинка, хрома, алюминия):

б) получение этанола брожением сахаров:

Физические свойства

Метиловый спирт – бесцветная жидкость с характерным спиртовым запахом,

Т кип. = 64,7 о С, горит бледным пламенем. Сильно ядовит.

Этиловый спирт – бесцветная жидкость с характерным спиртовым запахом,

Т кип. =78,3 о С

Спирты С 1 – С 11 – жидкости, С 12 и выше – твердые вещества.

спирты С 4 – С 5 имеют удушливый сладковатый запах;

высшие спирты запаха не имеют.

Относительная плотность меньше 1, т.е. легче воды.

Низшие спирты (до С 3) с водой смешиваются в любых соотношениях.

С увеличением углеводородного радикала растворимость в воде уменьшается, возрастает гидрофобность молекулы.

Спирты способны к межмолекулярной ассоциации:

В связи с этим температуры кипения и плавления у спиртов выше, чем у соответствующих углеводородов и галогенпроизводных.

Способность этилового спирта к образованию водородных связей лежит в основе его антисептических свойств.

§5. Химические свойства одноатомных спиртов .

Характерные реакции спиртов определяются наличием в их молекуле гидроксильной группы, которая обуславливает их значительную реакционную способность.

1. Взаимодействие с щелочными металлами:

Алкоголяты металлов R-ОМе – бесцветные твердые вещества, легко гидролизуются водой. Являются сильными основаниями.

2.Основные свойства

3.Образование простых эфиров:

4.Образование сложных эфиров

с неорганическими кислотами:

с органическими кислотами:

5.Реакция спиртов с галогенводородами:

Использование галогенидов фосфора:

6. Реакции дегидратации спиртов.

Отщепление воды от спиртов происходит в присутствии кислот или над катализаторами при повышенной температуре.

Дегидратация спиртов протекает согласно эмпирическому правилу Зайцева: предпочтительно водород отщепляется от наименее гидрогенизированного β-углеродного атома.

1) Дегидратация первичных спиртов протекает в жестких условиях:

2) Дегидратация вторичных спиртов:

3) Дегидратация третичных спиртов:

7.Окисление (окислители – КМnО 4 , К 2 Сr 2 О 7 в кислой среде)

8.Дегидрирование спиртов:

Двухатомные спирты (диолы)

Способы получения.

1. Окисление этилена

2. Гидролиз дигалогенпроизводного

Физические свойства:

Этиленгликоль – вязкая бесцветная жидкость сладкая на вкус, растворяется в воде; безводный этиленгликоль гигроскопичен.

Химические свойства

Реакции в основном аналогичны реакциям одноатомных спиртов, причем реакции могут протекать по одной или по двум гидроксильным группам.

1. Кислотные свойства; этиленгликоль более сильная кислота, чем этанол

(рК а = 14,8). Образование гликолятов

2. Реакции замещения на галогены

3. Образование простых эфиров

4. Дегидратация

5. Окисление

Трехатомные спирты (триолы)

Способы получения.

1. Гидролиз жиров

2. Из аллилхлорида

Физические свойства:

Глицерин – вязкая жидкость со сладким вкусом. Не ограничено растворим в воде, этаноле; не растворяется в эфире, безводный глицерин гигроскопичен (поглощает до 40% влаги из воздуха).

Химические свойства

Реакции в основном аналогичны реакциям одноатомных спиртов, причем реакции могут протекать по одной, по двум или сразу по трем гидроксильным группам.

1. Кислотные свойства; глицерин более сильная кислота, чем этанол и этиленгликоль. рК а = 13, 5.

С гидроксидом меди образует хелатный комплекс:

2. Реакции замещения

3. Дегидратация

Применение спиртов

Метанол и этанол используются в качестве растворителей, а так же как исходные вещества в синтезе органических веществ. Этанол применяют в фармации для приготовления настоек, экстрактов; в медицине – как антисептик.

Этиленгликоль применяют для получение синтетических полиэфирных волокон (например, лавсан), а так же в качестве антифриза (50%-ный р-р) – незамерзающая жидкость для охлаждения двигателей внутреннего сгорания.

Глицерин используется как компонент косметических препаратов и мазей. Тринитрат глицерина – лекарственный препарат при лечении стенокардии.

Тринитрат глицерина применяют в производстве взрывчатых веществ (динамит).

Использование глицерина в пищевой и текстильной промышленности.

Спиртами называются производные углеводородов, со­держащие одну или несколько групп -ОН, называемую гидроксильной группой или гидроксилом.

Спирты классифицируют:

1. По числу гидроксильных групп, содержащихся в молеку­ле, спирты делятся на одноатомные (с одним гидроксилом), двухатомные (с двумя гидроксилами), трехатомные (с тремя гидроксилами) и многоатомные.

Подобно предельным углеводородам, одноатомные спирты образуют закономерно построенный ряд гомологов:

Как и в других гомологических рядах, каждый член ряда спиртов отличается по составу от предыдущего и последующе­го членов на гомологическую разность (-СН 2 -).

2. В зависимости от того, при каком атоме углерода находит­ся гидроксил, различают первичные, вторичные и третичные спирты. В молекулах первичных спиртов содержится группа -СН 2 ОН, связанная с одним радикалом или с атомом водорода у метанола (гидроксил при первичном атоме углерода). Для вторичных спиртов характерна группа >СНОН, связанная с двумя радикалами (гидроксил при вторичном атоме углерода). В молекулах третичных спиртов имеется группа >С-ОН, свя­занная с тремя радикалами (гидроксил при третичном атоме углерода). Обозначая радикал через R, можно написать форму­лы этих спиртов в общем виде:

В соответствии с номенклатурой ИЮПАК при построении названия одноатомного спирта к названию родоначального углеводорода добавляется суффикс -ол. При наличии в соедине­нии более старших функций гидроксильная группа обознача­ется префиксом гидрокси- (в русском языке часто используется префикс окси-). В качестве основной цепи выбирается наиболее длинная неразветвленная цепь углеродных атомов, в состав которой входит атом углерода, связанный с гидроксильной группой; если соединение является ненасыщенным, то в эту цепь включается также и кратная связь. Следует заметить, что при определении начала нумерации гидроксильная функция обычно имеет преимущество перед галогеном, двойной связью и алкилом, следовательно, нумерацию начинают с того конца цепи, ближе к которому расположена гидроксильная группа:

Простейшие спирты называют по радикалам, с которыми соединена гидроксильная группа: (СН 3) 2 СНОН - изопропиловый спирт, (СН 3) 3 СОН - трет-бутиловый спирт.

Часто употребляется рациональная номенклатура спиртов. Согласно этой номенклатуре, спирты рассматриваются как про­изводные метилового спирта - карбинола:

Эта система удобна в тех случаях, когда название радикала яв­ляется простым и легко конструируемым.

2. Физические свойства спиртов

Спирты имеют более высокие температуры кипения и значительно менее летучи, имеют более высокие температуры плавления и луч­ше растворимы в воде, чем соответствующие углеводороды; однако различие уменьшается с ростом молекулярной массы.

Разница в физических свойствах связана с высокой поляр­ностью гидроксильной группы, которая приводит к ассоциации молекул спирта за счет водородной связи:

Таким образом, более высокие температуры кипения спир­тов по сравнению с температурами кипения соответствующих углеводородов обус­ловлены необходимостью разрыва водородных связей при пе­реходе молекул в газовую фазу, для чего требуется дополни­тельная энергия. С другой стороны, такого типа ассоциация приводит как бы к увеличению молекулярной массы, что естественно, обусловливает уменьшение летучести.

Спирты с низкой молекулярной массой хорошо растворимы в воде, это понятно, если учесть возможность образования во­дородных связей с молекулами воды (сама вода ассоциирована в очень большой степени). В метиловом спирте гидроксильная группа составляет почти половину массы молекулы; неудиви­тельно поэтому, что метанол смешивается с водой во всех отно­шениях. По мере увеличения размера углеводородной цепи в спирте влияние гидроксильной группы на свойства спиртов уменьшается, соответственно понижается растворимость веществ в воде и увеличивается их растворимость в углеводородах. Фи­зические свойства одноатомных спиртов с высокой молекуляр­ной массой оказываются уже очень сходными со свойствами соответствующих углеводородов.

Спирты не обладают ярко выраженными кислотными или основными свойствами. Как сами спирты, так и их водные рас­творы не проводят электрический ток в заметной степени. Так как алкильная группа является донором электронов, то элек­тронная плотность на атоме кислорода повышена и диссоци­ация связи О-Н проходит еще в меньшей степени, чем в моле­куле воды:

Благодаря доступности и способности вступать в многочис­ленные химические реакции спирты играют громадную роль в различных, в том числе в промышленных, синтезах.

Реакции, в которые вступают спирты, можно разбить на следующие группы.

1. Реакции, идущие с участием атома водорода гидроксиль­ной группы.

2. Реакции, происходящие с замещением или отщеплением всей гидроксильной группы.

3. Реакции окисления, в которых одновременно принимают участие гидроксильная группа, α-водородные атомы или даже соседние связи углерод - углерод.

1. Реакции, идущие с участием атома водорода гидроксильной группы

Атом водорода гидроксила обладает определенной подвиж­ностью и способен к легкому замещению.

А) Замещение атома водорода в гидроксиле метал лом.

Вещества, получающиеся в результате такого замеще­ния называются алкоголятами:

Алкоголяты, образуемые метиловым спиртом, называют метилатами, образуемые этиловым спиртом - этилатами и т. д.

Алкоголяты - твердые вещества, легко растворимые в спирте. Алкоголяты натрия - нестойкие соединения, быстро темнеют (осмоляются) на воздухе, особенно при нагревании. Наиболее устойчив метилат натрия. В присутствии следов вла­ги алкоголяты натрия разлагаются, и вновь образуется спирт:

Реакция образования алкоголята иллюстрирует сходство спиртов с водой. Низшие спирты (СН 3 ОН, С 2 Н 5 ОН) реагируют с натрием бурно, средние - слабо, а высшие реагируют лишь при нагревании. Алкоголяты образуются при действии на спирты и других активных металлов, например магния, алю­миния. В реакции образования алкоголята спирт проявляет свойства слабой кислоты.

Б) Замещение атома водорода в гидроксиле ацильной группой с образованием сложных эфиров.

При взаимо­действии спиртов с органическими кислотами (лучше в при­сутствии следов сильных кислот) получаются сложные эфиры:

Реакция образования сложных эфиров называется реакцией этерификации. Реакция этерификации обратима: вода в при­сутствии кислот или щелочей разлагает сложные эфиры с обра­зованием исходных веществ - кислоты и спирта. Такое гидролитическое разложение сложных эфиров называется реакцией гидролиза. Реакция этерификации, а также образующиеся в результате ее эфиры имеют очень важное промышленное значение.

2. Реакции, идущие с замещением или отщеплением всей гидроксильной группы

Гидроксильная группа спирта в некоторых реакциях облада­ет известной подвижностью и может замещаться или отщеп­ляться.

А) Замещение гидроксила на галоген с образованием гадогенопроизводных углеводородов.

Обычно реакция осуществляется при действии на спирты галогенидов фосфора или серы, а также галогеноводородов:

Реакция взаимодействия спирта с галогенопроизводными кислотами обратима. Чтобы добиться большего выхода, т. е. сдвинуть равновесие вправо, необходимо удалять из реакцион­ной смеси воду. Поэтому реакцию ведут в присутствии водоотнимающих веществ, например концентрированной серной кислоты, или же в безводный спирт пропускают газообразный галогеноводород. Чтобы уменьшить количество присутствующей воды, удобнее брать не галогеноводородную кислоту, а ее соль и вы­делять из нее сухой галогеноводород действием концентриро­ванной серной кислоты.

Б) Образование олефинов путем отщепления воды

При нагревании спирта с большим коли­чеством крепкой серной кислоты или хлоридом цинка, а так же при пропускании паров спирта при 350-500 °С через трубку с оксидом алюминия происходит реакция дегидратации (отня­тие воды) и образуются этиленовые углеводороды. Так, напри­мер, из этилового спирта получается этилен:

Образование молекулы воды происходит за счет гидроксила и атома водорода у соседнего атома углерода (реакция β-элиминирования).

Легче всего дегидратируются третичные, потом вторичные и затем уже первичные спирты. В спиртах сложного строения преимущественно отщепляется третичный (3-водородный атом, гораздо в меньшей степени - вторичный, и практически не отщепляется первичный (правило Зайцева):

В) Межмолекулярная дегидратация.

При нагревании избытка спирта с серной кислотой или при пропускании паров спирта через порошкообразный безводный сульфат алюминия при 200°С наряду с этиленовыми углеводородами получаются и простые эфиры:

Г) Замена гидроксида на аминогруппу. В жестких ус­ловиях (300 °С, оксид алюминия) гидроксильная группа спир­тов может быть заменена на аминогруппу с образованием пер­вичных аминов:

Реакция осложняется образованием вторичных (R 2 NН) и тре­тичных (R 3 N) аминов в результате взаимодействия спирта с уже образовавшимися аминами.

Реакции окисления, в которых одновременно принимают участие гидроксильная группа, α -водородные атомы или даже соседние связи углерод - углерод

А) Отщепление водорода (дегидрогенизация, дегидри­рование ).

При пропускании паров спирта при 200-300°С над мелко раздробленной медью или серебром первичные спирты превращаются в альдегиды, а вторичные - в кетоны. Реакция идет с выделением водорода:

Б) Окисление спиртов.

Окисление обычно проводят сильны­ми окислителями, например К 2 Сг 2 0 7 + Н 2 SО 4 или КМп0 4 + + Н 2 SО 4 . При окислении спиртов действие окислителя направ­ляется на тот углеродный атом, который уже связан с гидроксильной группой. Следовательно, в зависимости от того, какой спирт окисляется - первичный, вторичный или третичный, получаются различные продукты окисления.

При окислении вторичных спиртов образуются кетоны:

Окисление первичных спиртов происходит аналогично, но так как в первичных спиртах у углеродного атома, связанного с гидроксилом, на один атом водорода больше, чем во вторич­ных, то продуктами окисления в этом случае являются альде­гиды:

Эту реакцию трудно осуществить с высоким выходом из-за легкой окисляемости образовавшегося альдегида до соответст­вующей карбоновой кислоты.

Это производные углеводородов, в которых один атом водорода замещен на гидрокси- группу. Общая формула спиртов - CnH 2 n +1 OH .

Классификация одноатомных спиртов.

В зависимости от положения, где расположена ОН -группа, различают:

Первичные спирты:

Вторичные спирты:

Третичные спирты:

.

Изомерия одноатомных спиртов.

Для одноатомных спиртов характерна изомерия углеродного скелета и изомерия положения гидрокси-группы.

Физические свойства одноатомных спиртов.

Реакция идет по правилу Марковникова, поэтому из первичных алкенов можно получить только певичный спирт.

2. Гидролиз алкилгалогенидов при воздействии водных растворов щелочей:

Если нагрев слабый, то происходит внутримолекулярная дегидратация, в результате чего образуются простые эфиры:

Б) Спирты могут реагировать с галогенводородами, причем третичные спирты реагируют очень быстро, а первичные и вторичные - медленно:

Применение одноатомных спиртов.

Спирты используют преимущественно в промышленном органическом синтезе, в пищевой промышленности, в медицине и фармации.

Хмельные напитки, в состав которых входит этанол - одноатомный винный спирт, знакомы человечеству с древности. Их готовили из меда и перебродивших фруктов. В древнем Китае в напитки добавляли также рис.

Спирт из вина был получен на Востоке (VI -VII вв.). Европейские ученые создали его из продуктов брожения в XI в. Российский царский двор познакомился с ним в XIV в.: генуэзское посольство презентовало его как живую воду («аква вита»).

Т.Е. Ловиц, русский ученый XVIII в., впервые получил опытным путем абсолютный этиловый спирт при перегонке с использованием поташа - карбоната калия. Для очистки химик предложил применять древесный уголь.

Благодаря научным достижениям XIX -XX вв. стало возможным глобальное использование спиртов. Ученые прошлого разработали теорию строения водно-спиртовых растворов, исследовали их физико-химические свойства. Открыли способы брожения: циклический и непрерывно-проточный.

Значимые изобретения химической науки прошлого, которые сделали реальным полезное свойство спиртов:

  • ратификационный аппарат Барбе (1881)
  • брагоперегонный тарельчатый аппарат Саваля (1813)
  • разварник Генце (1873)

Был открыт гомологический ряд спиртовых веществ. Проведены серии экспериментов по синтезу метанола, этиленгликоля. Передовые научные исследования послевоенных лет XX века помогли улучшить качество производимой продукции. Подняли уровень отечественной спиртовой промышленности.

Распространение в природе

В природе спирты встречаются в свободным виде. Вещества также являются компонентами сложных эфиров. Естественный процесс брожения содержащих углеводы продуктов создает этанол, а также бутанол-1, изопропанол. Спирты в хлебопекарной промышленности, пивоварении, виноделии связано с использованием процесса брожения в этих отраслях. Большая часть феромонов насекомых представлена спиртами.

Спиртовые производные углеводов в природе:

  • сорбит — содержится в ягодах рябины, вишни, имеет сладкий вкус.

Многие растительные душистые вещества - это терпеновые спирты:

  • фенхол - компонент плодов фенхеля, смол хвойных деревьев
  • борнеол - составной элемент древесины борнеокамфорного дерева
  • ментол - компонент состава герани и мяты

Желчь человека, животных содержит желчные многоатомные спирты:

  • миксинол
  • химерол
  • буфол
  • холестанпентол

Вредное воздействие на организм

Повсеместное использование спиртов в сельском хозяйстве, промышленности, военном деле, транспортной сфере делают их доступными для рядовых граждан. Это становится причиной острых, в том числе массовых, отравлений, летальных исходов.

Опасность метанола

Опасным ядом является метанол. Он токсично воздействует на сердце, нервную систему. Прием внутрь 30 г метанола приводит к смерти. Попадание меньшего количества вещества - причина тяжелых отравлений с необратимыми последствиями (слепотой).

Предельно допустимая его концентрация в воздухе на производстве - 5 мг/м³. Опасны жидкости, содержащие даже минимальное количество метанола.

При легких формах отравления проявляются симптомы:

  • озноб
  • общая слабость
  • тошнота
  • головные боли

По вкусу, запаху метанол не отличается от этанола. Это становится причиной ошибочного употребления яда внутрь. Как отличить этанола от метанола в домашних условиях?


Медную проволоку сворачивают спиралью и сильно накаляют на огне. При ее взаимодействии с этанолом чувствуется запах прелых яблок. Соприкосновение с метанолом запустит реакцию окисления. Станет выделяться формальдегид - газ с неприятным резким запахом.

Токсичность этанола

Этанол приобретает токсичные и наркотические свойства в зависимости от дозы, способа попадания в организм, концентрации, длительности воздействия.

Этанол способен вызвать:

  • нарушение работы ЦНС
  • рак пищевода, желудка
  • гастрит
  • цирроз печени
  • болезни сердца

4-12 г этанола на 1 кг массы тела - смертельная разовая доза. Канцерогенным, мутагенным, токсичным веществом является ацетальдегид - основной метаболит этанола. Он изменяет мембраны клеток, структурные характеристики эритроцитов, повреждает ДНК. Изопропанол похож на этанол токсическим воздействием.

Производство спиртов и их оборот регулируются государством. Этанол не признан юридически наркотиком. Но его токсичное воздействие на организм доказано.

Особенно разрушительным становится влияние на головной мозг. Уменьшается его объем. Происходят органические изменения нейронов коры мозга, их повреждение и гибель. Возникают разрывы капилляров.

Нарушается нормальная работа желудка, печени, кишечника. При чрезмерном употреблении крепкого алкоголя появляются острые боли, диарея. Слизистая оболочка органов желудочно-кишечного тракта повреждается, застаивается желчь.

Ингаляционное воздействие спиртов

Общераспространенное использование спиртов во многих отраслях промышленности создает угрозу их ингаляционного воздействия. Токсичное воздействие исследовали на крысах. Получены результаты приведены в таблице.

Пищевая промышленность

Этанол - основа алкогольных напитков. Его получают из сахарной свеклы, картофеля, винограда, злаковых культур - ржи, пшеницы, ячменя, другого сырья, содержащего сахар или крахмал. В процессе производства применяются современные технологии очистки от сивушных масел.

Они подразделяются на:

  • крепкие с долей этанола 31-70 % (коньяк, абсент, ром, водка)
  • средней крепости - от 9 до 30 % этанола (ликеры, вина, наливки)
  • слабоалкогольные - 1,5-8 % (сидр, пиво).

Этанол является сырьем для натурального уксуса. Продукт получается при окислении уксуснокислыми бактериями. Аэрирование (принудительное насыщение воздухом) - необходимое условие процесса.

Этанол в пищевой промышленности не единственный спирт. Глицерин - пищевая добавка Е422 - обеспечивает соединение несмешиваемых жидкостей. Его используют при изготовлении кондитерских, макаронных, хлебобулочных изделий. Глицерин входит в состав ликеров, придает напиткам вязкость, сладкий вкус.

Применение глицерина благоприятно влияет на продукцию:

  • клейкость макарон уменьшается
  • консистенция конфет, кремов улучшается
  • предотвращается быстрое зачерствение хлеба, проседание шоколада
  • выпекание изделий происходит без налипания крахмала

Распространено использование спиртов как сахарозаменителей. Для этого по свойствам подходят маннит, ксилит, сорбит.

Парфюмерия и косметика

Вода, спирт, парфюмерная композиция (концентрат) - основные компоненты парфюмерных продуктов. Они используются в разных пропорциях. Таблица представляет виды парфюмерных изделий, пропорции главных составных частей.

В производстве парфюмерной продукции этанол высшей очистки выступает растворителем душистых веществ. При реакции с водой образуются соли, которые выпадают в осадок. Раствор несколько дней отстаивается и фильтруется.

2-фенилэтанол в парфюмерной и косметической промышленности заменяет натуральное розовое масло. Жидкость обладает легким цветочным запахом. Входит в состав фантазийных и цветочных композиций, косметического молочка, кремов, эликсиров, лосьонов.

Основной базой многих средств по уходу является глицерин. Он способен притягивать влагу, активно увлажнять кожу, делать ее эластичной. Сухой, обезвоженной коже полезны крема, маски, мыла с глицерином: он создает на поверхности влагосберегающую пленку, сохраняет мягкость кожного покрова.

Существует миф: что использование спирта в косметике вредно. Однако эти органические соединения - необходимые для производства продукции стабилизаторы, носители активных веществ, эмульгаторы.

Спирты (особенно жирные) делают средства по уходу кремообразными, смягчают кожу и волосы. Этанол в шампунях и кондиционерах увлажняет, быстро испаряется после мытья головы, облегчает расчесывание, укладку.

Медицина

Этанол в медицинской практике используют как антисептик. Он уничтожает микробы, предупреждает разложение в открытых ранах, задерживает болезненные изменения крови.

Его подсушивающее, обеззараживающее, дубящее свойства - причина использования для обработки рук медицинского персонала до работы с пациентом. Во время искусственной вентиляции легких этанол незаменим как пеногаситель. При нехватке медикаментозных средств становится компонентом общей анестезии.

При отравлении этиленгликолем, метанолом этанол становится противоядием. После его приема уменьшается концентрация токсичных веществ. Применяют этанол в согревающих компрессах, при растирании для охлаждения. Вещество восстанавливает организм при лихорадочном жаре и простудном ознобе.

Спирты в лекарственных средствах и их воздействие на человека исследует наука фармакология. Этанол как растворитель используют при изготовлении экстрактов, настоек целебного растительного сырья (боярышника, перца, женьшеня, пустырника).


Принимать эти жидкие лекарственные средства можно только после врачебной консультации. Необходимо строго следовать предписанной медиком дозировке!

Топливо

Коммерческая доступность метанола, бутанола-1, этанола - причина использования их в качестве топлива. Смешивают с дизельным топливом, бензином, применяют как горючее в чистом виде. Смеси позволяют уменьшить токсичность выхлопных газов.

Спирт, как альтернативный источник горючего имеет свои минусы:

  • у веществ повышенные коррозийные характеристики, в отличие от углеводородов
  • если в топливную систему попадет влага, произойдет резкое снижение мощности из-за растворимости веществ в воде
  • существует риск возникновения паровых пробок, ухудшения работы двигателя из-за низких температур кипения веществ.

Однако газовые и нефтяные ресурсы исчерпаемы. Поэтому применение спиртов в мировой практике стало альтернативой использования привычного топлива. Налаживается их массовое производство из отходов промышленности (целлюлозно-бумажной, пищевой, деревообрабатывающей) - одновременно решается проблема утилизации.

Промышленная переработка растительного сырья позволяет получить экологически чистое биотопливо - биоэтанол. Сырьем для него является кукуруза (США), сахарный тростник (Бразилия).

Положительный энергетический баланс, возобновляемость топливного ресурса делают производство биоэтанола популярным направлением мировой экономики.

Растворители, поверхностно-активные вещества

Кроме производства косметики, парфюмерии, жидких лекарственных средств, кондитерских изделий спирты еще являются хорошими растворителями:

Спирт как растворитель:

  • при изготовлении металлических поверхностей, электронных элементов, фотобумаги, фотопленок
  • при очистке натуральных продуктов: смол, масла, воска, жиров
  • в процессе экстракции - извлечения вещества
  • при создании синтетических полимерных материалов (клея, лака), красок
  • в производстве медицинских, бытовых аэрозолей.

Популярные растворители - изопропанол, этанол, метанол. Также используют многоатомные и циклические вещества: глицерин, циклогексанол, этиленгликоль.

Поверхностно-активные вещества производят из высших жирных спиртов. Полноценный уход за автомобилем, посудой, квартирой, одеждой возможен благодаря ПАВ. Они входят в состав чистящих, моющих средств, используются во многих отраслях экономики (см. таблицу).

Отрасль ПАВ: функции, свойства
Сельское хозяйство Входят в состав эмульсий; увеличивают продуктивность процесса передачи растениям питательных веществ
Строительство Уменьшают водопотребность бетона, цементных смесей; увеличивают морозостойкость, плотность материалов
Кожевенная промышленность Предотвращают слипание, повреждения изделий
Текстильная промышленность Снимают статическое электричество
Металлургия Снижают трение; способны выдержать высокие температуры
Бумажная промышленность Разделяют вареную целлюлозу от чернил в процессе переработки использованной бумаги
Лакокрасочная промышленность Способствуют полному проникновению краски на поверхности, включая небольшие углубления

Применение спиртов в пищевой промышленности, медицине, производстве парфюмерии и косметике, использование в качестве топлива, растворителей, поверхностно-активных веществ положительно сказывается на состояние экономики страны. Приносит удобство в жизнь человека, но требует соблюдения техники безопасности из-за токсичности веществ.

КАТЕГОРИИ

ПОПУЛЯРНЫЕ СТАТЬИ

© 2024 «minsan.ru» — Знакомимся с удовольствием